首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Functional activation of astrocytic metabolism is believed, according to one hypothesis, to be closely linked to excitatory neurotransmission and to provide lactate as fuel for oxidative metabolism in neighboring neurons. However, review of emerging evidence suggests that the energetic demands of activated astrocytes are higher and more complex than recognized and much of the lactate presumably produced by astrocytes is not locally oxidized during activation. In vivo activation studies in normal subjects reveal that the rise in consumption of blood-borne glucose usually exceeds that of oxygen, especially in retina compared to brain. When the contribution of glycogen, the brain's major energy reserve located in astrocytes, is taken into account the magnitude of the carbohydrate-oxygen utilization mismatch increases further because the magnitude of glycogenolysis greatly exceeds the incremental increase in utilization of blood-borne glucose. Failure of local oxygen consumption to equal that of glucose plus glycogen in vivo is strong evidence against stoichiometric transfer of lactate from astrocytes to neighboring neurons for oxidation. Thus, astrocytes, not nearby neurons, use the glycogen for energy during physiological activation in normal brain. These findings plus apparent compartmentation of metabolism of glycogen and blood-borne glucose during activation lead to our working hypothesis that activated astrocytes have high energy demands in their fine perisynaptic processes (filopodia) that might be met by glycogenolysis and glycolysis coupled to rapid lactate clearance. Tissue culture studies do not consistently support the lactate shuttle hypothesis because key elements of the model, glutamate-induced increases in glucose utilization and lactate release, are not observed in many astrocyte preparations, suggesting differences in their oxidative capacities that have not been included in the model. In vivo nutritional interactions between working neurons and astrocytes are not as simple as implied by "sweet (glucose-glycogen) and sour (lactate) food for thought."  相似文献   

2.
Energy homeostasis in the brain is maintained by oxidative metabolism of glucose, primarily to fulfil the energy demand associated with ionic movements in neurons and astrocytes. In this contribution we review the experimental evidence that grounds a specific role of glycogen metabolism in supporting the functional energetic needs of astrocytes during the removal of extracellular potassium. Based on theoretical considerations, we further discuss the hypothesis that the mobilization of glycogen in astrocytes serves the purpose to enhance the availability of glucose for neuronal glycolytic and oxidative metabolism at the onset of stimulation. Finally, we provide an evolutionary perspective for explaining the selection of glycogen as carbohydrate reserve in the energy-sensing machinery of cell metabolism.  相似文献   

3.
The biosynthesis of reduced glutathione (GSH) is carried out by the enzymes gamma-glutamylcysteine synthetase (GCL) and GSH synthetase. GCL is the rate-limiting step and represents a heterodimeric enzyme comprised of a catalytic subunit (GCLC) and a ("regulatory"), or modifier, subunit (GCLM). The nonhomologous Gclc and Gclm genes are located on mouse chromosomes 9 and 3, respectively. GCLC owns the catalytic activity, whereas GCLM enhances the enzyme activity by lowering the K(m) for glutamate and increasing the K(i) to GSH inhibition. Humans have been identified with one or two defective GCLC alleles and show low GSH levels. As an initial first step toward understanding the role of GSH in cellular redox homeostasis, we have targeted a disruption of the mouse Gclc gene. The Gclc(-/-) homozygous knockout animal dies before gestational day 13, whereas the Gclc(+/-) heterozygote is viable and fertile. The Gclc(+/-) mouse exhibits a gene-dose decrease in the GCLC protein and GCL activity, but only about a 20% diminution in GSH levels and a compensatory increase of approximately 30% in ascorbate-as compared with that in Gclc(+/+) wild-type littermates. These data show a reciprocal action between falling GSH concentrations and rising ascorbate levels. Therefore, the Gclc(+/-) mouse may be a useful genetic model for mild endogenous oxidative stress.  相似文献   

4.
To elucidate how thyroid hormone (TH) modulates glutathione (GSH) biogenesis in developing brain, the effect of the hormone on the activity of glutamate cysteine ligase (GCL), previously known as gamma-glutamyl synthetase (gamma-GCS), has been investigated. Hypothyroidism in developing rat brain declined the activity of GCL. Conversely, administration of TH to hypothyroid rats elicited an increase in the activity of the enzyme. TH treatment of astrocytes resulted in a rapid increase in the level of GSH and this up regulation was completely inhibited by L-buthionine S,R-sulfoximine. Kinetics of induction of GCL by TH in astrocytes were closely parallel to that of GSH and the induction was sensitive to both cycloheximide and actinomycin D. Quantitative RT-PCR analysis revealed that astrocytes contained a basal excess of GCLC (catalytic subunit of GCL) mRNA, relative to GCLM (modulator subunit of GCL) mRNA, the ratio being 4:1. TH treatment led to a differential increase in the expression of these two mRNAs, which resulted in a decline in the stoichiometric ratio of GCLC:GCLM mRNA that may favor holoenzyme formation with enhanced catalytic efficiency. TH treatment improved the antioxidative defense in astrocytes by enhancing their hydrogen peroxide scavenging ability with a decrease in peroxide half-life from 7.4 to 4.2 min. The overall results suggest that TH plays a positive role in maintaining GSH homeostasis in astrocytes and in protecting the brain from oxidative stress.  相似文献   

5.
Memory impairment induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) in rats is associated with impaired brain glucose and energy metabolism, oxidative stress and impaired cholinergic neurotransmission. Treatment with antioxidants and cholinergic agonists has been reported to produce beneficial effect in this model. However, no reports are available on drugs that improve glucose utilization and metabolism. In the present study, we evaluated the effects of pioglitazone on cognitive performance, oxidative stress and glucose utilization in ICV STZ injected rats (3 mg/kg, on day 1 and 3). Pioglitazone (10 and 30 mg/kg) was administered per oral (p.o.) for 14 days, starting 5 days prior to STZ injection. Cognitive performance was assessed using step-through passive avoidance and Morris water maze task. Malondialdehyde (MDA) and glutathione levels in brain were estimated as parameters of oxidative stress. Glucose utilization by brain was assessed as the amount of glucose consumed from the media by the brain. ICV STZ injected rats showed a severe deficit in learning and memory associated with increased MDA levels (+67.5%), decreased glutathione levels (-29.2%) and impaired cerebral glucose utilization (-44.4%). In contrast pioglitazone treatment improved cognitive performance, lowered oxidative stress and improved cerebral glucose utilization in ICV STZ rats. The present study demonstrates the beneficial effects of pioglitazone in the ICV STZ induced cognitive deficits, which can be exploited for the dementia associated with diabetes and age-related neurodegenerative disorder, where oxidative stress and impaired glucose and energy metabolism are involved.  相似文献   

6.
A decrease in GSH levels, the main redox regulator, can be observed in neurodegenerative diseases as well as in schizophrenia. In search for substances able to increase GSH, we evaluated the ability of curcumin (polyphenol), quercetin (flavonoid), and tert -butylhydroquinone (tBHQ) to up-regulate GSH-synthesizing enzymes. The gene expression, activity, and product levels of these enzymes were measured in cultured neurons and astrocytes. In astrocytes, all substances increased GSH levels and the activity of the rate-limiting synthesizing enzyme, glutamate cysteine ligase (GCL). In neurons, curcumin and to a lesser extent tBHQ increased GCL activity and GSH levels, while quercetin decreased GSH and led to cell death. In the two cell types, the gene that showed the greatest increase in its expression was the one coding for the modifier subunit of GCL (GCLM). The increase in mRNA levels of GCLM was 3 to 7-fold higher than that of the catalytic subunit. In astrocytes from GCLM-knock-out mice showing low GSH (−80%) and low GCL activity (−50%), none of the substances succeeded in increasing GSH synthesis. Our results indicate that GCLM is essential for the up-regulation of GCL activity induced by curcumin, quercetin and tBHQ.  相似文献   

7.
Astrocyte activation in working brain: energy supplied by minor substrates   总被引:7,自引:0,他引:7  
Glucose delivered to brain by the cerebral circulation is the major and obligatory fuel for all brain cells, and assays of functional activity in working brain routinely focus on glucose utilization. However, these assays do not take into account the contributions of minor substrates or endogenous fuel consumed by astrocytes during brain activation, and emerging evidence suggests that glycogen, acetate, and, perhaps, glutamate, are metabolized by working astrocytes in vivo to provide physiologically significant amounts of energy in addition to that derived from glucose. Rates of glycogenolysis during sensory stimulation of normal, conscious rats are high enough to support the notion that glycogen can contribute substantially to astrocytic glucose utilization during activation. Oxidative metabolism of glucose provides most of the ATP for cultured astrocytes, and a substantial contribution of respiration to astrocyte energetics is supported by recent in vivo studies. Astrocytes preferentially oxidize acetate taken up into brain from blood, and calculated local rates of acetate utilization in vivo are within the range of calculated rates of glucose oxidation in astrocytes. Glutamate may also serve as an energy source for activated astrocytes in vivo because astrocytes in tissue culture and in adult brain tissue readily oxidize glutamate. Taken together, contributions of minor metabolites derived from endogenous and exogenous sources add substantially to the energy obtained by astrocytes from blood-borne glucose. Because energy-generating reactions from minor substrates are not taken into account by routine assays of functional metabolism, they reflect a "hidden cost" of astrocyte work in vivo.  相似文献   

8.
Oxidative stress could be involved in the pathophysiology of schizophrenia, a major psychiatric disorder. Glutathione (GSH), a redox regulator, is decreased in patients' cerebrospinal fluid and prefrontal cortex. The gene of the key GSH-synthesizing enzyme, glutamate cysteine ligase modifier (GCLM) subunit, is strongly associated with schizophrenia in two case-control studies and in one family study. GCLM gene expression is decreased in patients' fibroblasts. Thus, GSH metabolism dysfunction is proposed as one of the vulnerability factors for schizophrenia.  相似文献   

9.
Glutathione pathways in the brain   总被引:9,自引:0,他引:9  
The antioxidant glutathione (GSH) is essential for the cellular detoxification of reactive oxygen species in brain cells. A compromised GSH system in the brain has been connected with the oxidative stress occuring in neurological diseases. Recent data demonstrate that besides intracellular functions GSH has also important extracellular functions in brain. In this respect astrocytes appear to play a key role in the GSH metabolism of the brain, since astroglial GSH export is essential for providing GSH precursors to neurons. Of the different brain cell types studied in vitro only astrocytes release substantial amounts of GSH. In addition, during oxidative stress astrocytes efficiently export glutathione disulfide (GSSG). The multidrug resistance protein 1 participates in both the export of GSH and GSSG from astrocytes. This review focuses on recent results on the export of GSH and GSSG from brain cells as well as on the functions of extracellular GSH in the brain. In addition, implications of disturbed GSH pathways in brain for neurodegenerative diseases will be discussed.  相似文献   

10.
Metabolic responses of brain cells to a stimulus are governed, in part, by their enzymatic specialization and interrelationships with neighboring cells, and local shifts in functional metabolism during brain activation are likely to be influenced by the neurotransmitter system, subcellular compartmentation, and anatomical structure. Selected examples of functional activation illustrate the complexity of metabolic interactions in working brain and of interpretation of changes in brain lactate levels. The major focus of this article is the disproportionately higher metabolism of glucose compared to oxygen in normoxic brain, a phenomenon that occurs during activation in humans and animals. The glucose utilized in excess of oxygen is not fully explained by accumulation of glucose, lactate, or glycogen in brain or by lactate efflux from brain to blood. Thus, any lactate derived from the excess glucose could not have been stoichiometrically exported to and metabolized by neighboring neurons because oxygen consumption would have otherwise increased and matched that of glucose. Metabolic labeling of tricarboxylic acid cycle-derived amino acids increased during brief sensory stimulation, reflecting a rise in oxidative metabolism. Brain glycogen is mainly in astrocytes, and its level falls throughout the stimulus and early post-activation interval. Glycogenolysis cannot be accounted for by lactate accumulation or oxidation; there must be rapid product clearance. Glycogen restoration is slow and diversion of glucose from oxidative pathways for its re-synthesis could reduce the global O(2)/glucose uptake ratio; astrocytes could downshift this ratio for up to an hour after 5 min stimulus. Morphological studies of astrocytes reveal a paucity of cytoplasm and organelles in the fine processes that surround synapses and form gap junction connections with neighboring astrocytes. Specialized regions of astrocytes, e.g. their endfeet and thin peripheral lamellae, are likely to have compartmentalized metabolic activities. Anatomical constraints imposed upon the fine processes might require preferential utilization of glycolysis to satisfy their energy demands, but rapid lactate clearance would then be essential, since its accumulation would inhibit glycolysis. Gap junctional connections between neighboring astrocytes provide a mechanism for rapid metabolite spreading via the astrocytic syncytium and elimination of by-products. Local structure-function relationships need to be incorporated into experimental models of neuron-astrocyte and astrocyte-astrocyte interactions in working brain.  相似文献   

11.
The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present unclear. The significance of glycogen in fueling glutamate uptake into astrocytes was specifically addressed in cultured astrocytes. Moreover, the objective was to elucidate whether glycogen derived energy is important for maintaining glutamatergic neurotransmission, induced by repetitive exposure to NMDA in co-cultures of cerebellar neurons and astrocytes. In the astrocytes it was shown that uptake of the glutamate analogue d -[3H]aspartate was impaired when glycogen degradation was inhibited irrespective of the presence of glucose, signifying that energy derived from glycogen degradation is important for the astrocytic compartment. By inhibiting glycogen degradation in co-cultures it was evident that glycogen provides energy to sustain glutamatergic neurotransmission, i.e. release and uptake of glutamate. The relocation of glycogen derived lactate to the neuronal compartment was investigated by employing d -lactate, a competitive substrate for the monocarboxylate transporters. Neurotransmitter release was affected by the presence of d -lactate indicating that glycogen derived energy is important not only in the astrocytic but also in the neuronal compartment.  相似文献   

12.
Astrocytes play an important role in the glutathione (GSH) metabolism of the brain. To test for an involvement of multidrug resistance protein (Mrp) 1 and 5 in the release of GSH and glutathione disulfide (GSSG) from astrocytes, we used astrocyte cultures from wild-type, Mrp1-deficient [Mrp1(-/-)] and Mrp5-deficient [Mrp5(-/-)] mice. During incubation of wild-type or Mrp5(-/-) astrocytes, GSH accumulated in the medium at a rate of about 3 nmol/(h.mg), whereas the export of GSH from Mrp1(-/-) astrocytes was only one-third of that. In addition, Mrp1(-/-) astrocytes had a 50% higher specific GSH content than wild-type or Mrp5(-/-) cells. The presence of 50 microm of the Mrp inhibitor MK571 inhibited the rate of GSH release from wild-type and Mrp5(-/-) astrocytes by 60%, but stimulated at the low concentration of 1 microm GSH release by 40%. In contrast, both concentrations of MK571 did not affect GSH export from Mrp1(-/-) astrocytes. Moreover, in contrast to wild-type and Mrp5(-/-) cells, GSSG export during H(2)O(2) stress was not observed for Mrp1(-/-) astrocytes. These data demonstrate that in astrocytes Mrp1 mediates 60% of the GSH export, that Mrp1 is exclusively responsible for GSSG export and that Mrp5 does not contribute to these transport processes.  相似文献   

13.
Glutamate cysteine ligase (GCL), composed of a catalytic (GCLC) and modulatory (GCLM) subunit, catalyzes the first step of glutathione (GSH) biosynthesis. Using 4-hydroxy-2-nonenal (4HNE), 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and tertiary-butylhydroquinone (tBHQ) as models of oxidative stress which are known to work through different mechanisms, we measured changes in cellular GSH, GCL mRNA, and GCL protein. 4HNE and tBHQ treatments increased cellular GSH levels, while DMNQ exposure depleted GSH. Furthermore, changes in the two GCL mRNAs largely paralleled changes in the GCL proteins; however, the magnitudes differed, suggesting some form of translational control. The molar ratio of GCLC:GCLM ranged from 3:1 to 17:1 in control human bronchial epithelial (HBE1) cells and all treatments further increased this ratio. Data from several mouse tissues show molar ratios of GCLC:GCLM that range from 1:1 to 10:1 in support of these findings. These data demonstrate that alterations in cellular GSH are clearly correlated with GCLC to a greater extent than GCLM. Surprisingly, both control HBE1 cells and some mouse tissues have more GCLC than GCLM and GCLM increases to a much lesser extent than GCLC, suggesting that the regulatory role of GCLM is minimal under physiologically relevant conditions of oxidative stress.  相似文献   

14.
The glycogen-associated protein phosphatase (PP1G/ R(GL))may play a central role in the hormonal control of glycogen metabolism in the skeletal muscle. Here, we investigated the in vivo epinephrine effect of glycogen metabolism in the skeletal muscle of the wild-type and R(GL) knockout mice. The administration of epinephrine increased blood glucose levels from 200 +/- +/- 20 to 325 +/- 20 mg/dl in both wild-type and knockout mice. Epinephrine decreased the glycogen synthase -/+ G6P ratio from 0.24 +/- 0.04 to 0.10 +/- 0.02 in the wild-type, and from 0.17 +/- 0.02 to 0.06 +/- 0.01 in the knockout mice. Conversely, the glycogen phosphorylase activity ratio increased from 0.21 +/- 0.04 to 0.65 +/- 0.07 and from 0.30 +/- 0.04 to 0.81 +/- 0.06 in the epinephrine treated wild-type and knockout mice respectively. The glycogen content of the knockout mice was substantially lower (27 percent) than that of both wild-type mice; and epinephrine decreased glycogen content in the wild-type and knockout mice. Also, in Western blot analysis there was no compensation of the other glycogen targeting components PTG/R5 and R6 in the knockout mice compared with the wild-type. Therefore, R(GL) is not required for the epinephrine stimulation of glycogen metabolism, and rather another phosphatase and/or regulatory subunit appears to be involved.  相似文献   

15.
Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.  相似文献   

16.
Astrocytes contain glycogen, an energy buffer, which can bridge local short term energy requirements in the brain. Glycogen levels reflect a dynamic equilibrium between glycogen synthesis and glycogenolysis. Many factors that include hormones and neuropeptides, such as insulin and insulin-like growth factor 1 (IGF-1) likely modulate glycogen stores in astrocytes, but detailed mechanisms at the cellular level are sparse. We used a glucose nanosensor based on Förster resonance energy transfer to monitor cytosolic glucose concentration with high temporal resolution and a cytochemical approach to determine glycogen stores in single cells. The results show that after glucose depletion, glycogen stores are replenished. Insulin and IGF-1 boost the process of glycogen formation. Although astrocytes appear to express glucose transporter GLUT4, glucose entry across the astrocyte plasma membrane is not affected by insulin. Stimulation of cells with insulin and IGF-1 decreased cytosolic glucose concentration, likely because of elevated glucose utilization for glycogen synthesis.  相似文献   

17.
The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation.  相似文献   

18.
Abstract: GSH, GSSG, vitamin E, and ascorbate were measured in 14-day cultures of chick astrocytes and neurons and compared with levels in the forebrains of chick embryos of comparable age. Activities of enzymes involved in GSH metabolism were also measured. These included -γ-glutamylcysteine synthetase, GSH synthetase, γ-glutamyl cyclotransferase, γ-glutamyltranspeptidase, glutathione transferase (GST), GSH peroxidase, and GSSG reductase. The concentration of lipid-soluble vitamin E in the cultured neurons was found to be comparable with that in the forebrain. On the other hand, the concentration of vitamin E in the astrocytes was significantly greater in the cultured astrocytes than in the neurons, suggesting that the astrocytes are able to accumulate exogenous vitamin E more extensively than neurons. The concentrations of major fatty acids were higher in the cell membranes of cultured neurons than those in the astrocytes. Ascorbate was not detected in cultured cells although the chick forebrains contained appreciable levels of this antioxidant. GSH, total glutathione (i.e., GSH and GSSG), and GST activity were much higher in cultured astrocytes than in neurons. γ-Glutamylcysteine synthetase activity was higher in the cultured astrocytes than in the cultured neurons. GSH reductase and GSH peroxidase activities were roughly comparable in cultured astrocytes and neurons. The high levels of GSH and GST in cultured astrocytes appears to reflect the situation in vivo. The data suggest that astrocytes are resistant to reactive oxygen species (and potentially toxic xenobiotics) and may play a protective role in the brain. Because enzymes of GSH metabolism are generally well represented in cultured astrocytes and neurons these cells may be ideally suited as probes for manipulating GSH levels in neural tissues in vitro. Cultured astrocytes and neurons should be amenable to the study of the effects of various metabolic insults on the GSH system. Such studies may provide insights into the design of therapeutic strategies to combat oxidative and xenobiotic stresses.  相似文献   

19.
High concentrations of 2-deoxy-d-ribose (2dRib) have been reported to cause oxidative stress and to disturb the glutathione (GSH) metabolism of various cell types. Exposure of astrocyte-rich primary cultures to millimolar concentrations of 2dRib or its stereoisomer 2-deoxy-l-ribose, but not the incubation with ribose, 2-deoxyglucose, glucose, fructose or saccharose, lowered the cellular GSH content in a time and concentration dependent manner. After exposure for 4 h to 30 mM 2dRib the cells contained 2dRib in a concentration of about 24 mM. Under these conditions 2dRib did not compromise cell viability and the ability of the cells to synthesise GSH, nor were the cellular ratio of glutathione disulfide (GSSG) to GSH and the extracellular concentrations of GSH or GSSG increased. These data demonstrate that 2dRib deprives viable cultured astrocytes of GSH and suggest that a cellular reaction of GSH with 2dRib or its metabolites is involved in the deprivation of astrocytic GSH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号