首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report first insights into a representative genome of rice cluster I (RC-I), a major group of as-yet uncultured methanogens. The starting point of our study was the methanogenic consortium MRE50 that had been stably maintained for 3 years by consecutive transfers to fresh medium and anaerobic incubation at 50 degrees C. Process-oriented measurements provided evidence for hydrogenotrophic CO(2)-reducing methanogenesis. Assessment of the diversity of consortium MRE50 suggested members of the families Thermoanaerobacteriaceae and Clostridiaceae to constitute the major bacterial component, while the archaeal population was represented entirely by RC-I. The RC-I population amounted to more than 50% of total cells, as concluded from fluorescence in situ hybridization using specific probes for either Bacteria or Archaea. The high enrichment status of RC-I prompted construction of a large insert fosmid library from consortium MRE50. Comparative sequence analysis of internal transcribed spacer (ITS) regions revealed that three different RC-I rrn operon variants were present in the fosmid library. Three, approximately 40-kb genomic fragments, each representative for one of the three different rrn operon variants, were recovered and sequenced. Computational analysis of the sequence data resulted in two major findings: (i) consortium MRE50 most likely harbours only a single RC-I genotype, which is characterized by multiple rrn operon copies; (ii) seven genes were identified to possess a strong phylogenetic signal (eIF2a, dnaG, priA, pcrA, gatD, gatE, and a gene encoding a putative RNA-binding protein). Trees exemplarily computed for the deduced amino acid sequences of eIF2a, dnaG, and priA corroborated a specific phylogenetic association of RC-I with the Methanosarcinales.  相似文献   

2.
Despite the fact that rice paddy fields (RPFs) are contributing 10 to 25% of global methane emissions, the organisms responsible for methane production in RPFs have remained uncultivated and thus uncharacterized. Here we report the isolation of a methanogen (strain SANAE) belonging to an abundant and ubiquitous group of methanogens called rice cluster I (RC-I) previously identified as an ecologically important microbial component via culture-independent analyses. To enrich the RC-I methanogens from rice paddy samples, we attempted to mimic the in situ conditions of RC-I on the basis of the idea that methanogens in such ecosystems should thrive by receiving low concentrations of substrate (H(2)) continuously provided by heterotrophic H(2)-producing bacteria. For this purpose, we developed a coculture method using an indirect substrate (propionate) in defined medium and a propionate-oxidizing, H(2)-producing syntroph, Syntrophobacter fumaroxidans, as the H(2) supplier. By doing so, we significantly enriched the RC-I methanogens and eventually obtained a methanogen within the RC-I group in pure culture. This is the first report on the isolation of a methanogen within RC-I.  相似文献   

3.
Despite the fact that rice paddy fields (RPFs) are contributing 10 to 25% of global methane emissions, the organisms responsible for methane production in RPFs have remained uncultivated and thus uncharacterized. Here we report the isolation of a methanogen (strain SANAE) belonging to an abundant and ubiquitous group of methanogens called rice cluster I (RC-I) previously identified as an ecologically important microbial component via culture-independent analyses. To enrich the RC-I methanogens from rice paddy samples, we attempted to mimic the in situ conditions of RC-I on the basis of the idea that methanogens in such ecosystems should thrive by receiving low concentrations of substrate (H2) continuously provided by heterotrophic H2-producing bacteria. For this purpose, we developed a coculture method using an indirect substrate (propionate) in defined medium and a propionate-oxidizing, H2-producing syntroph, Syntrophobacter fumaroxidans, as the H2 supplier. By doing so, we significantly enriched the RC-I methanogens and eventually obtained a methanogen within the RC-I group in pure culture. This is the first report on the isolation of a methanogen within RC-I.  相似文献   

4.
Gas hydrates deposited in subseafloor sediments are considered to primarily consist of biogenic methane. However, little evidence for the occurrence of living methanogens in subseafloor sediments has been provided. This study investigated viable methanogen diversity, population, physiology and potential activity in hydrate-bearing sediments (1–307 m below the seafloor) from the eastern Nankai Trough. Radiotracer experiments, the quantification of coenzyme F430 and molecular sequencing analysis indicated the occurrence of potential methanogenic activity and living methanogens in the sediments and the predominance of hydrogenotrophic methanogens followed by methylotrophic methanogens. Ten isolates and nine representative culture clones of hydrogenotrophic, methylotrophic and acetoclastic methanogens were obtained from the batch incubation of sediments and accounted for 0.5–76% of the total methanogenic sequences directly recovered from each sediment. The hydrogenotrophic methanogen isolates of Methanocalculus and Methanoculleus that dominated the sediment methanogen communities produced methane at temperatures from 4 to 55 °C, with an abrupt decline in the methane production rate at temperatures above 40 °C, which is consistent with the depth profiles of potential methanogenic activity in the Nankai Trough sediments in this and previous studies. Our results reveal the previously overlooked phylogenetic and metabolic diversity of living methanogens, including methylotrophic methanogenesis.Subject terms: Biogeochemistry, Biodiversity, Environmental microbiology  相似文献   

5.
Methane emission from paddy fields may be reduced by the addition of electron acceptors to stimulate microbial populations competitive to methanogens. We have studied the effects of ferrihydrite and gypsum (CaSO(4). 2H(2)O) amendment on methanogenesis and population dynamics of methanogens after flooding of Italian rice field soil slurries. Changes in methanogen community structure were followed by archaeal small subunit (SSU) ribosomal DNA (rDNA)- and rRNA-based terminal restriction fragment length polymorphism analysis and by quantitative SSU rRNA hybridization probing. Under ferrihydrite amendment, acetate was consumed efficiently (<60 microM) and a rapid but incomplete inhibition of methanogenesis occurred after 3 days. In contrast to unamended controls, the dynamics of Methanosarcina populations were largely suppressed as indicated by rDNA and rRNA analysis. However, the low acetate availability was still sufficient for activation of Methanosaeta spp., as indicated by a strong increase of SSU rRNA but not of relative rDNA frequencies. Unexpectedly, rRNA amounts of the novel rice cluster I (RC-I) methanogens increased significantly, while methanogenesis was low, which may be indicative of transient energy conservation coupled to Fe(III) reduction by these methanogens. Under gypsum addition, hydrogen was rapidly consumed to low levels ( approximately 0.4 Pa), indicating the presence of a competitive population of hydrogenotrophic sulfate-reducing bacteria (SRB). This was paralleled by a suppressed activity of the hydrogenotrophic RC-I methanogens as indicated by the lowest SSU rRNA quantities detected in all experiments. Full inhibition of methanogenesis only became apparent when acetate was depleted to nonpermissive thresholds (<5 microM) after 10 days. Apparently, a competitive, acetotrophic population of SRB was not present initially, and hence, acetotrophic methanosarcinal populations were less suppressed than under ferrihydrite amendment. In conclusion, although methane production was inhibited effectively under both mitigation regimens, different methanogenic populations were either suppressed or stimulated, which demonstrates that functionally similar disturbances of an ecosystem may result in distinct responses of the populations involved.  相似文献   

6.
Methane emission from paddy fields may be reduced by the addition of electron acceptors to stimulate microbial populations competitive to methanogens. We have studied the effects of ferrihydrite and gypsum (CaSO4·2H2O) amendment on methanogenesis and population dynamics of methanogens after flooding of Italian rice field soil slurries. Changes in methanogen community structure were followed by archaeal small subunit (SSU) ribosomal DNA (rDNA)- and rRNA-based terminal restriction fragment length polymorphism analysis and by quantitative SSU rRNA hybridization probing. Under ferrihydrite amendment, acetate was consumed efficiently (<60 μM) and a rapid but incomplete inhibition of methanogenesis occurred after 3 days. In contrast to unamended controls, the dynamics of Methanosarcina populations were largely suppressed as indicated by rDNA and rRNA analysis. However, the low acetate availability was still sufficient for activation of Methanosaeta spp., as indicated by a strong increase of SSU rRNA but not of relative rDNA frequencies. Unexpectedly, rRNA amounts of the novel rice cluster I (RC-I) methanogens increased significantly, while methanogenesis was low, which may be indicative of transient energy conservation coupled to Fe(III) reduction by these methanogens. Under gypsum addition, hydrogen was rapidly consumed to low levels (~0.4 Pa), indicating the presence of a competitive population of hydrogenotrophic sulfate-reducing bacteria (SRB). This was paralleled by a suppressed activity of the hydrogenotrophic RC-I methanogens as indicated by the lowest SSU rRNA quantities detected in all experiments. Full inhibition of methanogenesis only became apparent when acetate was depleted to nonpermissive thresholds (<5 μM) after 10 days. Apparently, a competitive, acetotrophic population of SRB was not present initially, and hence, acetotrophic methanosarcinal populations were less suppressed than under ferrihydrite amendment. In conclusion, although methane production was inhibited effectively under both mitigation regimens, different methanogenic populations were either suppressed or stimulated, which demonstrates that functionally similar disturbances of an ecosystem may result in distinct responses of the populations involved.  相似文献   

7.
To understand the physiological basis of methanogenic archaea living on interspecies H(2) transfer, the protein expression of a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH, was investigated in both pure culture and syntrophic coculture with an anaerobic butyrate oxidizer Syntrophothermus lipocalidus strain TGB-C1 as an H(2) supplier. Comparative proteomic analysis showed that global protein expression of methanogen cells in the model coculture was substantially different from that of pure cultured cells. In brief, in syntrophic coculture, although methanogenesis-driven energy generation appeared to be maintained by shifting the pathway to the alternative methyl coenzyme M reductase isozyme I and cofactor F(420)-dependent process, the machinery proteins involved in carbon fixation, amino acid synthesis, and RNA/DNA metabolisms tended to be down-regulated, indicating restrained cell growth rather than vigorous proliferation. In addition, our proteome analysis revealed that α subunits of proteasome were differentially acetylated between the two culture conditions. Since the relevant modification has been suspected to regulate proteolytic activity of the proteasome, the global protein turnover rate could be controlled under syntrophic growth conditions. To our knowledge, the present study is the first report on N-acetylation of proteasome subunits in methanogenic archaea. These results clearly indicated that physiological adaptation of hydrogenotrophic methanogens to syntrophic growth is more complicated than that of hitherto proposed.  相似文献   

8.

Background

Methane (CH4) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO2). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed.

Methodology/Principal Findings

The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H2) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species.

Conclusions/Significance

The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to worldwide efforts to mitigate ruminant methane emissions and reduce production of anthropogenic greenhouse gases.  相似文献   

9.
The activity of methanogens and related bacteria which inhabit the coal beds is essential for stimulating new biogenic coal bed methane (CBM) production from the coal matrix. In this study, the microbial community structure and methanogenesis were investigated in Southern Qinshui Basin in China, and the composition and stable isotopic ratios of CBM were also determined. Although geochemical analysis suggested a mainly thermogenic origin for CBM, the microbial community structure and activities strongly implied the presence of methanogens in situ. 454 pyrosequencing analysis combined with methyl coenzyme-M reductase (mcrA) gene clone library analysis revealed that the archaeal communities in the water samples from both coal seams were similar, with the dominance of hydrogenotrophic methanogen Methanobacterium. The activity and potential of these populations to produce methane were confirmed by the observation of methane production in enrichments supplemented with H2 + CO2 and formate, and the only archaea successfully propagated in the tested water samples was from the genus Methanobacterium. 454 pyrosequencing analysis also recovered the diverse bacterial communities in the water samples, which have the potential to play a role in the coal biodegradation fueling methanogens. These results suggest that the biogenic CBM was generated by coal degradation via the hydrogenotrophic methanogens and related bacteria, which also contribute to the huge CBM reserves in Southern Qinshui Basin, China.  相似文献   

10.
Zhu J  Zheng H  Ai G  Zhang G  Liu D  Liu X  Dong X 《PloS one》2012,7(5):e36756
In this work, we report the complete genome sequence of an obligate aceticlastic methanogen, Methanosaeta harundinacea 6Ac. Genome comparison indicated that the three cultured Methanosaeta spp., M. thermophila, M. concilii and M. harundinacea 6Ac, each carry an entire suite of genes encoding the proteins involved in the methyl-group oxidation pathway, a pathway whose function is not well documented in the obligately aceticlastic methanogens. Phylogenetic analysis showed that the methyl-group oxidation-involving proteins, Fwd, Mtd, Mch, and Mer from Methanosaeta strains cluster with the methylotrophic methanogens, and were not closely related to those from the hydrogenotrophic methanogens. Quantitative PCR detected the expression of all genes for this pathway, albeit ten times lower than the genes for aceticlastic methanogenesis in strain 6Ac. Western blots also revealed the expression of fwd and mch, genes involved in methyl-group oxidation. Moreover, (13)C-labeling experiments suggested that the Methanosaeta strains might use the pathway as a methyl oxidation shunt during the aceticlastic metabolism. Because the mch mutants of Methanosarcina barkeri or M. acetivorans failed to grow on acetate, we suggest that Methanosaeta may use methyl-group oxidation pathway to generate reducing equivalents, possibly for biomass synthesis. An fpo operon, which encodes an electron transport complex for the reduction of CoM-CoB heterodisulfide, was found in the three genomes of the Methanosaeta strains. However, an incomplete protein complex lacking the FpoF subunit was predicted, as the gene for this protein was absent. Thus, F(420)H(2) was predicted not to serve as the electron donor. In addition, two gene clusters encoding the two types of heterodisulfide reductase (Hdr), hdrABC, and hdrED, respectively, were found in the three Methanosaeta genomes. Quantitative PCR determined that the expression of hdrED was about ten times higher than hdrABC, suggesting that hdrED plays a major role in aceticlastic methanogenesis.  相似文献   

11.
Comparative analyses of methanogen diversity in the rumen of crossbred buffalo and cattle fed the same diet in the Philippines was performed by cloning the methyl coenzyme M reductase A (mcrA) gene. The cattle and buffalo libraries consisted of 50 clones each. Comparative analysis of the amino acid sequence revealed that these 2 libraries differed significantly (P?<?0.01). The deduced amino acid sequences of the clones were classified into 9 operational taxonomic units (OTUs) in buffalo and 11 OTUs in cattle. Sequence similarity between the clones and known cultured methanogens ranged from 86 to 97?% for buffalo and 84 to 99?% for cattle. Methanobrevibacter species were predominant in buffalo (64?% of the clones), and an unknown mcrA was predominant in cattle (52?% of the clones). A large number of clones with low similarity to cultivated methanogens was observed in both buffalo and cattle, suggesting the presence of an unknown methanogen species in their rumen.  相似文献   

12.
Methanogenesis was characterized in hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico both in situ and after long-term manipulation in a greenhouse environment. Substrate addition experiments indicate methanogenesis to occur primarily through the catabolic demethylation of non-competitive substrates, under field conditions. However, evidence for the coexistence of other metabolic guilds of methanogens was obtained during a previous manipulation of sulfate concentrations. To fully characterize methanogenesis in these mats, in the absence of competition for reducing equivalents with sulfate-reducing microorganisms, we maintained microbial mats for longer than 1 year under conditions of lowered sulfate and salinity levels. The goal of this study was to assess whether observed differences in methane production during sulfate and salinity manipulation were accompanied by shifts in the composition of methanogen communities. Culture-independent techniques targeting methyl coenzyme M reductase genes ( mcrA ) were used to assess the dynamics of methanogen assemblages. Clone libraries from mats sampled in situ or maintained at field-like conditions in the greenhouse were exclusively composed of sequences related to methylotrophic members of the Methanosarcinales . Increases in pore water methane concentrations under conditions of low sulfate correlated with an observed increase in the abundance of putatively hydrogenotrophic mcrA , related to Methanomicrobiales . Geochemical and molecular data provide evidence of a significant shift in the metabolic pathway of methanogenesis from a methylotroph-dominated system in high-sulfate environments to a mixed community of methylotrophic and hydrogenotrophic methanogens under low sulfate conditions.  相似文献   

13.
Northern acidic peatlands are important sources of atmospheric methane, yet the methanogens in them are poorly characterized. We examined methanogenic activities and methanogen populations at different depths in two peatlands, McLean bog (MB) and Chicago bog (CB). Both have acidic (pH 3.5-4.5) peat soils, but the pH of the deeper layers of CB is near-neutral, reflecting its previous existence as a neutral-pH fen. Acetotrophic and hydrogenotrophic methanogenesis could be stimulated in upper samples from both bogs, and phylotypes of methanogens using H2/CO2 (Methanomicrobiales) or acetate (Methanosarcinales) were identified in 16S rRNA gene clone libraries and by terminal restriction fragment length polymorphism (T-RFLP) analyses using a novel primer/restriction enzyme set that we developed. Particularly dominant in the upper layers was a clade in the Methanomicrobiales, called E2 here and the R10 or fen group elsewhere, estimated by quantitative polymerase chain reaction to be present at approximately 10(8) cells per gram of dry peat. Methanogenic activity was considerably lower in deeper samples from both bogs. The methanogen populations detected by T-RFLP in deeper portions of MB were mainly E2 and the uncultured euryarchaeal rice cluster (RC)-II group, whereas populations in the less acidic CB deep layers were considerably different, and included a Methanomicrobiales clade we call E1-E1', as well as RC-I, RC-II, marine benthic group D, and a new cluster that we call the subaqueous cluster. E2 was barely detectable in the deeper samples from CB, further evidence for the associations of most organisms in this group with acidic habitats.  相似文献   

14.
Methanosphaera stadtmanae has the most restricted energy metabolism of all methanogenic archaea. This human intestinal inhabitant can generate methane only by reduction of methanol with H2 and is dependent on acetate as a carbon source. We report here the genome sequence of M. stadtmanae, which was found to be composed of 1,767,403 bp with an average G+C content of 28% and to harbor only 1,534 protein-encoding sequences (CDS). The genome lacks 37 CDS present in the genomes of all other methanogens. Among these are the CDS for synthesis of molybdopterin and for synthesis of the carbon monoxide dehydrogenase/acetyl-coenzyme A synthase complex, which explains why M. stadtmanae cannot reduce CO2 to methane or oxidize methanol to CO2 and why this archaeon is dependent on acetate for biosynthesis of cell components. Four sets of mtaABC genes coding for methanol:coenzyme M methyltransferases were found in the genome of M. stadtmanae. These genes exhibit homology to mta genes previously identified in Methanosarcina species. The M. stadtmanae genome also contains at least 323 CDS not present in the genomes of all other archaea. Seventy-three of these CDS exhibit high levels of homology to CDS in genomes of bacteria and eukaryotes. These 73 CDS include 12 CDS which are unusually long (>2,400 bp) with conspicuous repetitive sequence elements, 13 CDS which exhibit sequence similarity on the protein level to CDS encoding enzymes involved in the biosynthesis of cell surface antigens in bacteria, and 5 CDS which exhibit sequence similarity to the subunits of bacterial type I and III restriction-modification systems.  相似文献   

15.
In this study, the microbial community succession in a thermophilic methanogenic bioreactor under deteriorative and stable conditions that were induced by acidification and neutralization, respectively, was investigated using PCR-mediated single-strand conformation polymorphism (SSCP) based on the 16S rRNA gene, quantitative PCR, and fluorescence in situ hybridization (FISH). The SSCP analysis indicated that the archaeal community structure was closely correlated with the volatile fatty acid (VFA) concentration, while the bacterial population was impacted by pH. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (i.e., a Methanoculleus sp. and a Methanothermobacter sp.) and one species of aceticlastic methanogen (i.e., a Methanosarcina sp.). The quantitative PCR of the 16S rRNA gene from each methanogen revealed that the Methanoculleus sp. predominated among the methanogens during operation under stable conditions in the absence of VFAs. Accumulation of VFAs induced a dynamic transition of hydrogenotrophic methanogens, and in particular, a drastic change (i.e., an approximately 10,000-fold increase) in the amount of the 16S rRNA gene from the Methanothermobacter sp. The predominance of the one species of hydrogenotrophic methanogen was replaced by that of the other in response to the VFA concentration, suggesting that the dissolved hydrogen concentration played a decisive role in the predominance. The hydrogenotrophic methanogens existed close to bacteria in aggregates, and a transition of the associated bacteria was also observed by FISH analyses. The degradation of acetate accumulated during operation under deteriorative conditions was concomitant with the selective proliferation of the Methanosarcina sp., indicating effective acetate degradation by the aceticlastic methanogen. The simple methanogenic population in the thermophilic anaerobic digester significantly responded to the environmental conditions, especially to the concentration of VFAs.  相似文献   

16.
【目的】揭示芦岭煤田微生物群落组成,并分析其潜在的产甲烷类型及产甲烷途径。【方法】采集芦岭煤田的煤层气样品和产出水样品,分别分析样品的地球化学性质特征;利用Illumina HiSeq高通量测序技术分析产出水中的微生物群落结构;采用添加不同底物的厌氧培养实验进一步证实芦岭煤田生物成因气的产甲烷类型。【结果】该地区煤层气为生物成因和热成因的混合成因气;古菌16S rRNA基因分析表明在产出水中含有乙酸营养型、氢营养型和甲基营养型的产甲烷菌。丰度较高的细菌具有降解煤中芳香族和纤维素衍生化合物的潜力。厌氧富集培养结果表明,添加乙酸盐、甲酸盐、H2+CO2为底物的矿井水样均有明显的甲烷产生。【结论】芦岭煤田具有丰富的生物多样性,该地区同时存在三种产甲烷类型。本研究为利用微生物技术提高煤层气的采收率,实现煤层气的可持续开采提供科学依据。  相似文献   

17.
In this study, the microbial community succession in a thermophilic methanogenic bioreactor under deteriorative and stable conditions that were induced by acidification and neutralization, respectively, was investigated using PCR-mediated single-strand conformation polymorphism (SSCP) based on the 16S rRNA gene, quantitative PCR, and fluorescence in situ hybridization (FISH). The SSCP analysis indicated that the archaeal community structure was closely correlated with the volatile fatty acid (VFA) concentration, while the bacterial population was impacted by pH. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (i.e., a Methanoculleus sp. and a Methanothermobacter sp.) and one species of aceticlastic methanogen (i.e., a Methanosarcina sp.). The quantitative PCR of the 16S rRNA gene from each methanogen revealed that the Methanoculleus sp. predominated among the methanogens during operation under stable conditions in the absence of VFAs. Accumulation of VFAs induced a dynamic transition of hydrogenotrophic methanogens, and in particular, a drastic change (i.e., an approximately 10,000-fold increase) in the amount of the 16S rRNA gene from the Methanothermobacter sp. The predominance of the one species of hydrogenotrophic methanogen was replaced by that of the other in response to the VFA concentration, suggesting that the dissolved hydrogen concentration played a decisive role in the predominance. The hydrogenotrophic methanogens existed close to bacteria in aggregates, and a transition of the associated bacteria was also observed by FISH analyses. The degradation of acetate accumulated during operation under deteriorative conditions was concomitant with the selective proliferation of the Methanosarcina sp., indicating effective acetate degradation by the aceticlastic methanogen. The simple methanogenic population in the thermophilic anaerobic digester significantly responded to the environmental conditions, especially to the concentration of VFAs.  相似文献   

18.
An in vivo study aiming to investigate the rumen methanogens community structure was conducted in Mandya sheep fed on straw and concentrate diet. The ruminal fluid samples were collected and processed for unravelling the rumen microbiota and methanogens diversity. Further, the daily enteric methane emission and methane yield was also quantified using the SF6 tracer technique. Results indicated that the Bacteroidetes (~57%) and Firmicutes (25%) were two prominent affiliates of the bacterial community. Archaea represented about 2.5% of the ruminal microbiota. Methanobacteriales affiliated methanogens were the most prevalent in sheep rumen. The study inveterate that the ruminal archaea community in sheep is composed of 9 genera and 18 species. Methanobrevibacter represented the largest genus of the archaeome, while methylotrophs genera constituted only 13% of the community. Methanobrevibacter gottschalkii was the prominent methanogen, and Methaobrevibacter ruminantium distributed at a lower frequency (~2.5%). Among Methanomassiliicoccales, Group 12 sp. ISO4-H5 constituted the most considerable fraction (~11%). KEGG reference pathway for methane metabolism indicated the formation of methane through hydrogenotrophic and methylotrophic pathways, whereas the acetoclastic pathway was not functional in sheep. The enteric methane emission and methane yield was 19.7 g/d and 20.8 g/kg DMI, respectively. Various species of Methanobrevibacter were differently correlated, and the distribution of hydrogenotrophic methanogens mainly explained the variability in methane yield between the individual sheep. It can be inferred from the study that the hydrogenotrophic methanogens dominate the rumen archaeal community in sheep and methylotrophic/aceticlastic methanogens represent a minor fraction of the community. Further studies are warranted for establishing the metabolic association between the prevalent hydrogenotrophs and methylotrophs to identify the key reaction for reducing methane emission.  相似文献   

19.
Temperate rice field soil from Vercelli (Italy) contains moderately thermophilic methanogens of the yet uncultivated rice cluster I (RC-I), which become prevalent upon incubation at temperatures of 45-50 degrees C. We studied whether such thermophilic methanogens were ubiquitously present in anoxic soils. Incubation of different rice field soils (from Italy, China and the Philippines) and flooded riparian soils (from the Netherlands) at 45 degrees C resulted in vigorous CH(4) production after a lag phase of about 10 days. The archaeal community structure in the soils was analysed by terminal restriction fragment length polymorphism (T-RFLP) targeting the SSU rRNA genes retrieved from the soil, and by cloning and sequencing. Clones of RC-I methanogens mostly exhibited T-RF of 393 bp, but also terminal restriction fragment (T-RF) of 158 and 258 bp length, indicating a larger diversity than previously assumed. No RC-I methanogens were initially found in flooded riparian soils. However, these archaea became abundant upon incubation of the soil at 45 degrees C. Thermophilic RC-I methanogens were also found in the rice field soils from Pavia, Pila and Gapan. However, the archaeal communities in these soils also contained other methanogenic archaea at high temperature. Rice field soil from Buggalon, on the other hand, only contained thermophilic Methanomicrobiales rather than RC-I methanogens, and rice field soil from Jurong mostly Methanomicrobiales and only a few RC-I methanogens. The archaeal community of rice field soil from Zhenjiang almost exclusively consisted of Methanosarcinaceae when incubated at high temperature. Our results show that moderately thermophilic methanogens are common in temperate soils. However, RC-I methanogens are not always dominating or ubiquitous.  相似文献   

20.
We constructed genomic trees based on the presence and absence of families of protein‐encoding genes observed in 55 prokaryotic and five eukaryotic genomes. There are features of the genomic trees that are not congruent with typical rRNA phylogenetic trees. In the bacteria, for example, Deinococcus radiodurans associates with the Gram‐positive bacteria, a result that is also seen in some other phylogenetic studies using whole genome data. In the Archaea, the methanogens plus Archaeoglobus form a united clade and the Euryarchaeota are divided with the two Thermoplasma genomes and Halobacterium sp. falling below the Crenarchaeota. While the former appears to be an accurate representation of methanogen‐relatedness, the misplacement of Halobacterium may be an artefact of parsimony. These results imply the last common ancestor of the Archaea was not a methanogen, leaving sulphur reduction as the most geochemically plausible metabolism for the base of the archaeal crown group. It also suggests that methanogens were not a component of the Earth's earliest biosphere and that their origin occurred sometime during the Archean. In the Eukarya, the parsimony analysis of five Eukaryotes using the Crenarchaeota as an outgroup seems to counter the Ecdysozoa hypothesis, placing Caenorhabditis elegans (Nematoda) below the common ancestor of Drosophila melanogaster (Arthropoda) and Homo sapiens (Chordata) even when efforts are made to counter the possible effects of a faster rate of sequence evolution for the C. elegans genome. Further analysis, however, suggests that the gene loss of ‘animal’ genes is highest in C. elegans and is obscuring the relationships of these organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号