首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-acetyl-D-mannosamine (ManNAc) transport system of Escherichia coli K92 was studied when this bacterium was grown in a chemically defined medium containing ManNAc as carbon source. Kinetic measurements were carried out in vivo at 37 degrees C in 25 mM phosphate buffer, pH 7.5. Under these conditions, the uptake rate was linear for at least 15 min and the calculated Km for ManNAc was 280 microM. The transport system was strongly inhibited by sodium arsenate (97%), potassium cyanide (84%) and 2,4-dinitrophenol (88%) added at final concentrations of 1 mM (each). Analysis of bacterial ManNAc phosphotransferase activity revealed in vitro ManNAc phosphorylation activity only when phosphoenolpyruvate was present. These results strongly support the notion that ManNAc uptake depends on a specific phosphotransferase system. Study of specificities showed that N-acetylglucosamine and mannosamine specifically inhibited the transport of ManNAc in this bacterium. Analysis of expression revealed that the ManNAc transport system was induced by ManNAc, glucosamine, galactosamine, mannosamine and mannose but not by N-acetylglucosamine or N-acetylgalactosamine. Moreover, ManNAc permease was subject to glucose repression and cAMP stimulation. Full induction of the ManNAc transport system required the simultaneous presence of both cAMP and ManNAc.  相似文献   

2.
Abstract Thermoanaerobacter thermohydrosulfuricus Rt8.B1 catabolized xylose by the pentose phosphate pathway, and xylose isomerase and xylulokinase were inducible. The uptake of xylose was by two low-affinity, inducible systems. Both systems were resistant to the protonophore, tetrachlorosalicylanilide, the F1F0-ATPase inhibitor, N , N -dicyclohexylcarboiimide, and the sodium/proton antiporter, monensin. The high capacity system (100 nmol min−1 (mg protein)−1) was only expressed when the bacterium was grown with a high concentration of xylose (50 mM). It took more than 60 mM xylose to saturate the high capacity system. When T. thermohydrosulfuricus was grown with a low concentration of xylose (5 mM), xylose uptake was saturated by as little as 10 mM xylose (18 nmol min−1 (mg protein)−1). Cells grown with 50 mM xylose could not transport glucose, and high capacity xylose transport was not inhibited by glucose or non-metabolizable glucose analogues. Cells grown with 5 mM xylose transported glucose at a rapid rate (30 nmol min−1 (mg protein)−1), and low capacity xylose uptake was competitively inhibited by either glucose or 2-deoxy-glucose. Because the glucose uptake of cells grown on 5 mM xylose was competitively inhibited by xylose, it appeared that the low capacity xylose uptake system was a glucose/xylose carrier.  相似文献   

3.
myo-inositol is a growth factor for mammalian cells as well as for the pathogenic protozoa Trypanosoma cruzi. Most of the cell surface molecules in this organism rely on myo-inositol as the biosynthetic precursor for phosphoinositides and glycosylated phosphatidylinositols. The aim of this work was to investigate the process of myo-inositol translocation across the parasite cell membrane. myo-Inositol uptake was concentration-dependent in the concentration range 0.1-10 microM with maximal transport obtained at 8 microM. Using sodium-free buffers, where Na+ was replaced by choline or K+, myo-inositol uptake was inhibited by 50%. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, inhibited the Na+-dependent and Na+-independent myo-inositol uptake by 68 and 33%, respectively. In contrast, ouabain, an (Na++/K+) ATPase inhibitor, did not affect transport. Part of the myo-inositol uptake is mediated by active transport as it was inhibited when energy metabolism inhibitors such as carbonyl cyanide p-(trifluoromethoxy)-phenylhydrazone (34%), 2,4-dinitrophenol (50%), KCN (71%) and NaN3 (69%) were added to the medium, or the temperature of the medium was lowered to 4 degrees C. The addition of glucose (5-50 mM) or mannose (10 mM) did not change the myo-inositol uptake, whereas the addition of 10 mM nonlabeled myo-inositol totally inhibited this transport, indicating that the transporter is specific for myo-inositol. Phloretin (0.3 mM) and phoridzin (5 mM), but not cytochalasin B, were efficient inhibitors of myo-inositol uptake. A portion of the accumulated myo-inositol is converted to inositol phosphates and phosphoinositides. These data show that myo-inositol transport in T. cruzi epimastigotes is mediated by at least two specific transporters - one Na+-dependent and the other Na+-independent.  相似文献   

4.
We have examined lactate uptake (as the rate of net muscle lactate accumulation) and unidirectional inward transport (measured by a paired-tracer dilution method) in muscle of the perfused skinned rat hindlimb. Inhibition of tracer influx (fractional uptake at 1 mM L(+)-lactate, 43.3 +/- 3.1% but only 32.9 +/- 1.8% at 50 mM lactate) suggested some competition between tracer and native forms of the carboxylate for transport. D(-)-lactate (50 mM) did not inhibit uptake of tracer L(+)-lactate. Pyruvate (25 mM), but none of five other monocarboxylates, inhibited uptake of tracer lactate, by 22% (P less than 0.01). Altering perfusate pH from 7.4 to 6.8 caused a 36% increase (P less than 0.001) in the unidirectional L(+)-lactate transport at 1 mM L(+)-lactate, whereas increasing pH to 7.7 reduced transport by 18% (P less than 0.01). Tracer lactate influx was inhibited by 500 microM 4-acetamido-4'-isothiocyanostilbene (SITS) (19%), 5 mM alpha-cyano-4-hydroxycinnamic acid (CIN) (20-30%), 1 mM amiloride (27%) and by a thiol group reagent p-chloromercuribenzenesulphonic acid (pCMBS) (26%). Overall the results indicate that at least two processes are involved in the transfer of lactate: one, saturable, with a Vmax of 0.84 mumol.min-1.g-1 and an apparent Km of 21 mM was sensitive to SITS, CIN, and a thiol group reagent; the other was non-saturable and insensitive to SITS and CIN with an apparent rate constant of 0.1 min-1.  相似文献   

5.
The N-acetyl-D-galactosamine (GalNAc) transport system of Escherichia coli K92 was studied when the bacterium was grown in a chemically defined medium containing GalNAc as a carbon source. Kinetic measurements were carried out in vivo at 37 degrees C in 25 mM phosphate buffer, pH 7.0. Under these conditions, the uptake rate was linear for at least 3 min and the calculated Km for GalNAc was 3 microM. The transport system was strongly inhibited by sodium arsenate (70%), potassium cyanide (62%) and 2,4-dinitrophenol (75%). Analysis of bacterial GalNAc phosphotransferase activity revealed in vitro GalNAc phosphorylation activity only when phosphoenolpyruvate was present. These results strongly support the notion that GalNAc uptake depends on a specific phosphotransferase system. Study of activity regulation showed that N-acetylglucosamine and mannosamine specifically inhibit the transport of GalNAc in this bacterium. Analysis of expression revealed that the GalNAc transport system is specifically induced by GalNAc but not by N-acetylglucosamine (GlcNAc) or N-acetylmannosamine (ManNAc), two intimately related sugars. Moreover, full induction of GalNAc transport required the presence of both cAMP and GalNAc. Comparative studies revealed that E. coli K92 has developed a regulation mechanism that specifically induces the appropriate permease based on the presence of each respective phospho-amino sugar (GlcNAc, ManNAc and GalNAc). In this regulation system, GlcNAc is the preferred amino sugar as the carbon source. Finally, when E. coli K92 was grown using GalNAc, capsular polysialic acid production was strongly affected. The presence of intracellular phosphoderivative acetylamino sugars, generated by the action of the phosphotransferase transport system, can be responsible for this effect.  相似文献   

6.
The mechanism of stimulation of amino acid transport system A caused by amino acid deprivation in L6 cells was investigated. In cells loaded with alpha-aminoisobutyric acid (AIB), amino acid deprivation increased the rate of proline uptake only after the intracellular [AIB] dropped below 7 mM. Efflux of proline was not sensitive to the presence of proline in the outer medium (with or without external Na+), suggesting that efflux through system A (and possibly uptake) is not susceptible to transinhibition. Transport (stimulated uptake) into amino acid-deprived cells and that into amino acid-supplemented cells differed in several chemical properties: 1) In the former group, transport was higher at lower pH values than in the latter, and the optimum pH values were 7.5 and 7.8, respectively. 2) Unlike proline uptake in supplemented cells, uptake in deprived cells was inhibited by 50% with N-ethylmaleimide (1 mM) or by 50 microM p-chloromercuribenzoate (PCMBS). Inhibition by PCMBS was not due to collapse of the Na+ gradient. The mercurial inhibited only the deprivation-induced stimulation of transport, bringing the rate of proline uptake to the "basal" uptake level observed in amino acid-supplemented cells. Proline uptake was not stimulated by a second deprivation following treatment with PCMBS and a supplementation-deprivation cycle. However, in untreated cells, or by reversing mercaptide formation with dithiotreitol, the second deprivation stimulated transport. Deprivation at 4 degrees C did not elicit stimulation of proline uptake. Cycloheximide prevented the stimulation and decreased the rate of proline uptake in deprived cells more efficiently than in supplemented cells. Actinomycin D prevented stimulation when added at the onset of deprivation. The above data indicate that stimulation of transport by deprivation is protein synthesis-dependent and that the stimulated transport had chemical properties distinct from the "basal" transport in supplemented cells. The evidence presented is consistent with a model of activation of a finite pool of transporters upon deprivation, the chemical characteristics of which differ from those of the "basal" transport system.  相似文献   

7.
Time courses of L-lactate and pyruvate uptake into isolated rat hepatocytes were measured in a citrate-based medium to generate a pH gradient (alkaline inside), by using the silicone-oil-filtration technique at 0 degrees C to minimize metabolism. At low concentrations of lactate and pyruvate (0.5 mM), transport was inhibited by over 95% by 5 mM-alpha-cyano-4-hydroxycinnamate, whereas at higher concentrations (greater than 10 mM) a significant proportion of transport could not be inhibited. The rate of this non-inhibitable transport was linearly related to the substrate concentration, was less with pyruvate than with L-lactate, and appeared to be due to diffusion of undissociated acid. Uptake of D-lactate was not inhibited by alpha-cyano-4-hydroxycinnamate and occurred only by diffusion. Kinetic parameters for the carrier-mediated transport process were obtained after correction of the initial rates of uptake of lactate and pyruvate in the absence of 5 mM-alpha-cyano-4-hydroxycinnamate by that in the presence of inhibitor. Under the conditions used, the Km values for L-lactate and pyruvate were 2.4 and 0.6 mM respectively and the Ki for alpha-cyano-4-hydroxycinnamate as a competitive inhibitor was 0.11 mM. Km values for the transport of L-lactate and pyruvate into rat erythrocytes under similar conditions were 3.0 and 0.96 mM. The Vmax. of lactate and pyruvate transport into hepatocytes at 0 degrees C was 3 nmol/min per mg of protein. Carrier-mediated transport of 0.5 mM-L-lactate was inhibited by 0.2 mM-p-chloromercuribenzenesulphonate (greater than 90%), 0.5 mM-quercetin (80%), 0.6 mM-isobutylcarbonyl-lactyl anhydride (70%) and 0.5 mM-4,4'-di-isothiocyanostilbene-2,2'-disulphonate (50%). A similar pattern of inhibition of lactate transport is seen in erythrocytes. It is suggested that the same or a similar carrier protein exists in both tissues. The results also show that L-lactate transport into rat hepatocytes is very rapid at physiological temperatures and is unlikely to restrict the rate of its metabolism. Differences between our results and those of Fafournoux, Demigne & Remesy [(1985) J. Biol. Chem. 260, 292-299] are discussed.  相似文献   

8.
Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources.  相似文献   

9.
The phenylacetic acid transport system (PATS) of Pseudomonas putida U was studied after this bacterium was cultured in a chemically defined medium containing phenylacetic acid (PA) as the sole carbon source. Kinetic measurement was carried out, in vivo, at 30 degrees C in 50 mM phosphate buffer (pH 7.0). Under these conditions, the uptake rate was linear for at least 3 min and the value of Km was 13 microM. The PATS is an active transport system that is strongly inhibited by 2,4-dinitrophenol, 4-nitrophenol (100%), KCN (97%), 2-nitrophenol (90%), or NaN3 (80%) added at a 1 mM final concentration (each). Glucose or D-lactate (10 mM each) increases the PATS in starved cells (140%), whereas arsenate (20 mM), NaF, or N,N'-dicyclohexylcarbodiimide (1 mM) did not cause any effect. Furthermore, the PATS is insensitive to osmotic shock. These data strongly suggest that the energy for the PATS is derived only from an electron transport system which causes an energy-rich membrane state. The thiol-containing compounds mercaptoethanol, glutathione, and dithiothreitol have no significant effect on the PATS, whereas thiol-modifying reagents such as N-ethylmaleimide and iodoacetate strongly inhibit uptake (100 and 93%, respectively). Molecular analogs of PA with a substitution (i) on the ring or (ii) on the acetyl moiety or those containing (iii) a different ring but keeping the acetyl moiety constant inhibit uptake to different extents. None of the compounds tested significantly increase the PA uptake rate except adipic acid, which greatly stimulates it (163%). The PATS is induced by PA and also, gratuitously, by some phenyl derivatives containing an even number of carbon atoms on the aliphatic moiety (4-phenyl-butyric, 6-phenylhexanoic, and 8-phenyloctanoic acids). However, similar compounds with an odd number of carbon atoms (benzoic, 3-phenylpropionic, 5-phenylvaleric, 7-phenylheptanoic, and 9-phenylnonanoic acids) as well as many other PA derivatives do not induce the system, suggesting that the true inducer molecule is phenylacetyl-coenzyme A (PA-CoA). Furthermore, after P. putida U is cultured in the same medium containing other carbon sources (glucose or octanoic, benzoic, or 4-hydroxyphenylacetic acid) in the place of PA, the PATS and PA-CoA are not detected; neither the PATS nor PA-CoA is found in cases in which mutants (PA- and PCL-) lacking the enzyme which catalyzed the initial step of the PA degradation (phenylacetyl-CoA ligase) are used. PA-CoA has been extracted from bacteria and identified as a true PA catabolite by high-performance liquid chromatography and also enzymatically with pure acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum.  相似文献   

10.
Noradrenaline (NA) can be released by both exocytosis and by the membrane transporter responsible for transmitter uptake. Previously, we reported that S-nitrosocysteine (SNC), an S-nitrosothiol, stimulated [3H]NA release from the rat hippocampus. In this study, we investigated the involvement of the NA transport system in SNC-stimulated NA release from rat brain (cerebral cortex and hippocampus) slices. [3H]NA release by SNC in normal Na(+) (148 mM)-containing buffer from both slices was slightly, but significantly, inhibited by 1 microM desipramine, an NA transporter inhibitor. [3H]NA release in low Na(+) (under 14 mM)-containing buffer was inhibited by over 50% by desipramine. [3H]NA release by tyramine from both slices in normal and low Na(+) buffer was almost completely inhibited by desipramine. [3H]NA uptake into cerebral cortical slices was observed in low Na(+) buffer at 20-30% of normal Na(+) buffer levels. [3H]NA uptake in both normal and low Na(+) buffers was inhibited by desipramine and by SNC. Although [3H]NA uptake in normal Na(+) buffer was almost completely inhibited by 500 microM ouabain, the uptake in low Na(+) buffer was resistant to ouabain. These findings suggest the existence of a functional Na(+)-independent NA transport system and that SNC stimulates NA release at least partially via this system in brain slices.  相似文献   

11.
1,5-Anhydro-D-glucitol (AG) is one of the main polyols and its structure resembles glucose. It has been proposed that decreased serum AG concentrations in diabetic patients are a novel indicator of diabetic metabolic derangement. However, the pathway of AG metabolism still remains to be clarified. In this study we investigated the transport of AG into human polymorphonuclear leukocytes (PMNLs) isolated from healthy volunteers and found that 0.1 mM 3-O-methy-D-glucose (3OMG) was equilibrated with a half saturation time of 10 s, while the uptake rate of AG was much slower. The concentration dependence of AG uptake revealed that the AG transport velocity reached a plateau, with a Km of about 50 mM and Vmax of about 25 nmol/min/10(7) cells. Transport of 14C-labeled 3OMG was inhibited by unlabeled D-glucose or AG in a dose-dependent manner. The mean inhibition constant (Ki) for D-glucose and for AG were 1.06 and 4.93 mM, respectively. Cytochalasin B (20 microM) inhibited 3OMG transport by 90% but AG transport by only 50%. S/V for 14C-labeled AG transport plotted against the concentration of unlabeled 3OMG showed a non-linear and biphasic pattern. These results suggest that AG influx into PMNLs is mediated not only by the cytochalasin B-sensitive glucose transport system but also via another facilitated transport system.  相似文献   

12.
Transport of methylamine by Pseudomonas sp. MA.   总被引:5,自引:5,他引:0       下载免费PDF全文
Pseudomonas sp. MA grows on methylamines as a sole source of carbon, nitrogen, and energy. The transport of methylamine into the organism was investigated. It was found that this organism possesses an inducible transport system for methylamine having the following physical parameters: pH optimum, 7.2; temperature optimum, 30 to 35 degrees C; Km, 1 to 30 mM; Vmax, 90 to 120 nmol/min per mg (dry weight) of cells. Methylamine uptake was curtailed by azide, cyanide, and carbonyl cyanide-m-chlorophenylhydrazone; osmotic shock treatment reduced the uptake by 50%. The uptake was not effectively inhibited by ammonium ion, amino acids, or amides, but was competitively inhibited by short-chain alkylamines. Cells grown on succinate-ammonium chloride did not possess the transport system, but it could be induced in such cells by methylamine in 20 h. Cells grown with methylamine as a sole nitrogen, but not carbon, source transported methylamine at a reduced rate.  相似文献   

13.
Highly purified lysosomal membrane vesicles, obtained from rat liver lysosomes, were used to study characteristics of NeuAc transport across the lysosomal membrane. Uptake of [14C]NeuAc was found to be strongly influenced by a pH gradient across the membrane. When a proton gradient (pHin greater than pHout) was generated by impermeable buffers, NeuAc uptake above equilibrium level (overshoot) was observed. The influence of membrane diffusion potentials was ruled out by experiments where K+ and valinomycin were present. The overshoot appeared to be specifically produced by protons, since gradients of other cations (Na+ and K+) did not give stimulation. Proton-driven uptake was saturable (Kt = 0.24 mM) and mediated by a single system, as shown by linearity of the Scatchard plot. Stimulation of transport was also obtained by preincubation of vesicles with MgATP and the effect was blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, but not by the protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. Monocarboxylic sugars like glycuronic acids were competitive inhibitors of sialic acid transport. Transstimulation of [14C] NeuAc uptake was observed when vesicles were preloaded either with unlabeled NeuAc or with glucuronic acid. The data demonstrate that lysosomal membrane vesicles from rat liver are a suitable system for kinetic studies of solute transport events. The presence of a proton-driven carrier in the lysosomal membrane specific for sialic acid and other acidic sugars, including glucuronic acid, is shown. The possible physiological significance of these findings for the human lysosomal carrier and the patients with a sialic acid transport defect is discussed.  相似文献   

14.
Two high-affinity K+ uptake systems, KtrI and KtrII, have been reported in Enterococcus hirae. A mutant, JEMK1, defective in these two systems did not grow at pH 10 in low-K+ medium (less than 1 mM K+), but grew well when supplemented with 10 mM KCl. In this mutant, we found an energy-dependent K+ uptake at pH 10 with a low affinity for K+ (Km of approximately 20 mM) and an extremely high rate [Vmax of 1.6 micromol x min(-1) (mg protein)(-1)]. Rb+ uptake [Km of approximately 40 mM and Vmax of 0.5 micromol x min(-1) (mg protein)(-1)], which was inhibited competitively by K+ and less prominently by Cs+, was also observed. The specificity of this transport is likely to be K+>Rb+>Cs+. This peculiar K+ transport plays a role as a salvage mechanism against defects in high-affinity systems in the K+ homeostasis of this bacterium.  相似文献   

15.
The transport of cGMP out of cells is energy requiring and has characteristics compatible with an ATP-energised anion pump. In the present study a model with inside-out vesicles from human erythrocytes was employed for further characterisation of the cGMP transporter. The uptake of leukotriene C(4) (LTC(4)), a substrate for multidrug resistance protein (MRP), was concentration-dependently inhibited by the leukotriene antagonist MK571 (IC(50)=110+/-20 nM), but cGMP was unable to inhibit LTC(4) uptake. Oxidised glutathione (GSSG) and glutathione S-conjugates caused a concentration-dependent inhibition of [(3)H]cGMP uptake with IC(50) of 2200+/-700 microM for GSSG, 410+/-210 microM for S-(p-nitrobenzyl)glutathione and 37+/-16 microM for S-decylglutathione, respectively. Antioxidants such as reduced glutathione and dithiothreitol did not influence transport for concentrations up to 100 microM, but both inhibited cGMP uptake with approx. 25% at 1 mM. The cGMP pump was sensitive to temperature without activity below 20 degrees C. The transport of cGMP was dependent on pH with maximal activity between pH 8.0 and 8.5. Calcium caused a concentration-dependent inhibition with IC(50) of 43+/-12 microM. Magnesium gave a marked activation in the range between 1 and 20 mM with maximum effect at 10 mM. The other divalent cations, Mn(2+) and Co(2+), were unable to substitute Mg(2+), but caused some activation at 1 mM. EDTA and EGTA stimulated cGMP transport concentration-dependently with 50% and 100% above control at 100 microM, respectively. The present study shows that the cGMP pump has properties compatible with an organic anion transport ATPase, without affinity for the MRP substrate LTC(4). However, the blockade of the cGMP transporter by glutathione S-conjugates suggests it is one of several GS-X pumps.  相似文献   

16.
The transport of 1,5-anhydro-D-glucitol (AG) across plasma membranes was investigated in rat hepatoma cells, Reuber H-35. The AG uptake by the cells showed a concentration gradient dependency: the uptake was saturated within 40 s, which was less than one-third of the saturation time for 2-deoxy-D-glucose (DG) uptake. Furthermore, the Km value of the transport system for AG was higher than 100 mM. Though AG has a pyranoid structure resembling that of glucose, AG did not compete for cellular uptake with DG, D-glucose or 3-O-methyl-D-glucose, which are taken into cells through the glucose transporters. Conversely, the DG transport was not inhibited by AG at concentrations up to 50 mM. AG transport was hardly inhibited by 10 microM cytochalasin B, which strongly inhibits glucose transporters. In contrast, the AG transport was inhibited by 100 microM phloretin much more strongly than the DG transport when cells were preincubated with the inhibitor; the inhibition constant was 28.0 microM. The AG transport was not inhibited by 100 microM phloridzin, while the DG uptake was slightly inhibited by phloridzin. On the basis of these observations we propose that the AG uptake into rat hepatoma cells is mediated by a carrier distinct from glucose transporters.  相似文献   

17.
The intracellular concentration of inorganic 35SO4 in Monochrysis lutheri cells exposed to 0.513 mM Na235SO4 for up to 6-hr remained constant at about 0.038 mM. The exchange rate of this 35SO4 with the external unlabelled sulphate was negligible compared to the rate of influx across the plasmalemma (0.032 mu moles/g cells/hr). The flux of free 35SO4 to organic 35S was 0.029 mu moles/g cells/hr. Assuming an internal electrical potential in the cells of -70 mV, this intracellular concentration of inorganic 35SO4 was well in excess of that obtainable by passive diffusion as calculated from the Nernst equation. These results indicate that sulphate is accumulated by an active mechanism rather than by facilitated diffusion. Sulphate uptake appears to occur via a carrier-mediated membrane transport system which conforms to Michaelis-Menten type saturation kinetics with a Km of 3.2 X 10(-5) M and Vmax of 7.9 X 10(-5) mu moles sulphate/hr/10(5) cells. Uptake was dependent on a source of energy since the metabolic inhibitor CCCP almost completely inhibited uptake under both light and dark conditions and DCMU caused a 50% decrease in uptake under light conditions. Under dark conditions, uptake remained at about 80% of that observed under light conditions and was little affected by DCMU, indicating that the energy for uptake could be supplied by either photosynthesis or respiration. A charge and size recognition site in the cell is implied by the finding that sulphate uptake was inhibited by chromate and selenate but not by tungstate, molybdate, nitrate or phosphate. Chromate did not inhibit photosynthesis. Cysteine and methionine added to the culture medium were apparently capable of exerting inhibition of sulphate uptake in both unstarved and sulphate-starved cells. Cycloheximide slightly inhibited sulphate uptake over an 8-hr period indicating, either a slow rate of entry of the inhibitor into the cells or a slow turnover of the protein(s) associated with sulphate transport.  相似文献   

18.
Transport of AMP by Rickettsia prowazekii.   总被引:7,自引:6,他引:1       下载免费PDF全文
Rickettsia prowazekii possesses an exchange transport system for AMP. Chromatographic analysis of the rickettsiae demonstrated that transported AMP appeared intracellularly as AMP, ADP, and ATP, and no hydrolytic products appeared in either the intracellular or extracellular compartments. The phosphorylation of AMP to ADP and ATP was prevented by pretreatment of the cells with 1 mM N-ethylmaleimide without inhibiting the transport of AMP. Although no efflux was demonstrable in the absence of nucleotide in the medium, the intracellular adenine nucleotide pool could be exchanged with external unlabeled adenine nucleotides. Both ADP and ATP were as effective as AMP at inhibiting the uptake of [3H]AMP. Although this transport system was inhibited by low temperature (0 degrees C) and partially inhibited by the protonophore carbonyl cyanide-m-chlorophenyl hydrazone (1 mM), it was relatively insensitive to KCN (1 mM). The uptake of AMP at 34 degrees C had an apparent Kt for influx of 0.4 mM and a Vmax of 354 pmol min-1 per mg. At 0 degrees C there was a very rapid and unsaturable association of AMP with these organisms. Correction of the uptake data at 34 degrees C for the 0 degrees C component lowered the apparent Kt to 0.15 mM. Both magnesium and phosphate ions are required for optimal transport activity. Chemical measurements of the total intracellular nucleotide pools demonstrated that this system was not a net adenine nucleotide transport system, but that uptake of AMP was the result of an exchange with internal adenine nucleotides.  相似文献   

19.
In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance.  相似文献   

20.
myo-Inositol Transport in Mouse Astroglia-Rich Primary Cultures   总被引:1,自引:1,他引:0  
Uptake of radiolabeled myo-inositol was studied in astroglia-rich primary cultures derived from neonatal mouse brains. The uptake was saturable in the presence of Na+ with a Km of 25 microM and a Vmax of 60 pmol.min-1.(mg protein)-1, suggesting a high-affinity transport system for myo-inositol in astroglial cells. In addition, a Na(+)-independent, nonsaturable component was found. Carrier-mediated uptake was not inhibited by cytochalasin B (50 microM), but was reduced by depolarizing concentrations of K+ and, to different extents, in the presence of phloretin, ouabain, or amiloride (1 mM each). scyllo-Inositol, glucose, and galactose also reduced myo-inositol uptake; inhibition by the two hexoses was not reversed in the presence of 0.4 mM sorbinil. On the other hand, uptake of 2-deoxyglucose was not inhibited by high concentrations of myo-inositol. Preincubation of the cells with glucose-free or inositol-free medium stimulated uptake of myo-inositol and preincubation with 25 mM glucose in the presence of 0.4 mM sorbinil had no effect on the rate of uptake. The results suggest that myo-inositol is taken up into the astroglial cells by a transport mechanism that is distinct from that of glucose and probably is an active one. Sorbitol pathway activity does not interfere with myo-inositol uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号