首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in the gene encoding connexin-26 (specified GJB2) have been shown to be a major cause of nonsyndromic recessive deafness (NSRD), and a single mutation 35delG in the GJB2 gene accounts for the majority of cases of NSRD. This mutation was screened in France and in other European populations by a reliable PCR method. We present here a meta-analysis of the 35delG frequencies in 4123 random controls from 20 European countries, and show that the mutation is more frequent in the south of Europe than in the north; a north-south increasing cline of 35delG frequencies is established (r = -0.527).  相似文献   

2.
Mutations in the GJB2 gene, which encodes the protein connexin 26, are a major cause of autosomal recessive deafness. The most frequent mutation, 35delG, has a carrier frequency as high as 4% in some countries, and this frequency varies in different ethnic groups. Most of the Brazilian population results from interethnic crosses of people from three continents (European, African, and Amerindian), and the proportion of each varies according to the geographical region of the country. To verify if the different ethnic composition of Brazilian regions leads to variable 35delG carrier frequencies, we performed the screening of the 35delG mutation using DNA from dried-blood filter paper samples obtained from 1,856 newborns from 10 cities in different regions. The 35delG mutation was found in 25 individuals (1.35%), indicating an overall carrier frequency of 1:74. This frequency was 1:47 in the north, 1:64 in the southeast, 1:85 in the south and 1:124 in the northeast, but these differences were not significant. The overall frequency of the 35delG allele was estimated as 0.0067, and comparison between expected and observed genotype frequencies indicates that the population is in Hardy-Weinberg equilibrium.  相似文献   

3.
The aim of this study was to investigate the allelic frequency of 35delG mutation in patients with recessive, nonsyndromic hearing loss (NSHL) compared to normal hearing individuals in the Croatian population. For this purpose, we analyzed 27 unrelated individuals with nonsyndromic hearing loss and 342 healthy individuals. The method we used is based on the principle of polymerase chain reaction (PCR)-mediated, site-directed mutagenesis, followed by a BsiYI digestion. Among patients with NSHL, the 35delG mutation was found on 51.85% alleles. Carrier frequency among healthy control individuals was 1 in 68.4 (1.5%). The patients, found to be wild-type, either in heterozygous or homozygous form, were further tested by direct sequencing. Among them, two different mutations were observed, W24X and 313del14. Relatively high prevalence of 35delG mutation among patients with NSHL indicate that it is an important cause of NSHL in Croatia. Early diagnosis by identification of the 35delG mutation would greatly improve genetic counseling, as well as treatment and management of deafness in Croatia.  相似文献   

4.
Mutations in the GJB2 gene are a major cause of congenital deafness. One specific mutation, the 35delG mutation, has accounted for most of the GJB2 mutations detected in European populations and is one of the most frequent disease mutations identified so far. We evaluated the frequency of the 35delG mutation in DNA samples from Brazilians of European, Asian, and African ancestry. All DNA samples were screened for the 35delG mutation using an allele-specific PCR. This study shows that the frequency of a common mutation (35delG) is significantly lower in non-European populations.  相似文献   

5.
The 35delG mutation in the connexin 26 gene (GJB2) at the DFNB1 locus represents the most common mutation in Caucasian patients with genetic sensorineural deafness. This new meta-analysis concerns published carrier frequencies of the 35delG mutation in 27 populations for 6,628 unrelated individuals in Europe and in the Middle East; the mean carrier frequency of the mutation is 1.9%. Compared on a regional basis, the most elevated carrier frequency value is of 1 individual carrier in 31 in southern Europe. It is probable that the 35delG mutation originated in ancient Greece and was subsequently propagated in other Mediterranean countries (especially in Italy) during recent historical times.  相似文献   

6.
GJB2 (Gap Junction protein beta type 2; Connexin 26, CX26) is known for its contribution to nonsyndromic recessive deafness (NSRD). One particular mutation, 35delG, a deletion of one guanine from a stretch of six leading to a frame shift early in the gene, has a high prevalence in populations from European descent. 35delG testing therefore has become a standard test in genetic diagnostic laboratories. Most of the currently available methods for the detection of 35delG are relatively time consuming, and not suited for high-throughput diagnostic testing. Within this paper we present a real-time PCR genotyping assay based on melting curve analysis, requiring only a single preparation step before the actual analysis. The assay was optimized on a panel of 48 samples with known 35delG genotypes and subsequently tested using a large Belgian population (N = 460) with unknown 35delG status. For the latter set of samples, real-time PCR results were validated with SNAPShot, an assay used in our laboratory for diagnostic purposes. The real-time PCR genotyping method has proven to be highly reliable, rapid, cost-effective, and suitable for high-throughput screening. We believe that this genetic test for 35delG will find widespread applications in the DNA diagnostic field.  相似文献   

7.
8.
Mutations in the Connexin-26 gene are responsible for up to 60% of nonsyndromic, neurosensory autosomal recessive deafness (NSRD). Amongst all the mutations described to date, 35delG (a deletion of a G in a tract of five Gs at positions 30-35) is the most common and has been found in virtually all of the populations studied. Because its frequency varies in different populations, a rapid and simple method of detection of this mutation would be very helpful in population studies. A wide variety of methods for this detection have been described, but we herein present a very simple method using a PCR with primers designed to provide an amplicon of 94 or 93 nucleotides for the normal or mutant alleles, respectively, that can be easily distinguished in an 8% polyacrylamide gel. The entire protocol can be completed in a morning, thus supporting multiple runs. This assay will be useful in screening the large sample sizes required for population studies.  相似文献   

9.
In Caucasian populations a single mutation, 35delG, accounts for the majority of GJB2 gene mediated hearing loss, with carrier frequencies estimated between 2-4%, possibly resulting from a founder effect rather than from a mutational hot spot. In Moroccan population, the 35delG mutation accounts for 90.8% of all GJB2 mutated alleles in deaf patients with a carrier frequency of 2.65%. The aim of this study was to evaluate whether the 35delG mutation has derived from a single origin in the Moroccan population. We enrolled 30 unrelated deaf patients homozygous for the 35delG mutation and 165 unrelated control individuals negative for this mutation, and genotyped three microsatellite markers flanking the GJB2 region: D13S141, D13S175 and D13S143. Data analysis revealed that the 35delG mutation is associated with particular alleles of these markers, with significant linkage disequilibrium for the 125 and 105 nucleotide long alleles of D13S141 and D13S175, and that a single specific haplotype accounts for 68% of the chromosomes carrying the 35delG mutation. The estimate age of 35delG mutation is 135 generations or approximately 2700 years old. Like in other Mediterranean populations, our results suggest that in the Moroccan population the 35delG mutation has derived from a single origin in a common founder process.  相似文献   

10.
We have ascertained a multi-generation family with apparent autosomal recessive non-syndromic childhood hearing loss (DFNB). Failure to demonstrate linkage in a genome-wide scan with 300 polymorphic markers has suggested genetic heterogeneity for the hearing loss in this family. This heterogeneity could be demonstrated by analysis of candidate loci and genes for DFNB. Patients in one branch of the family (branch C) are homozygous for the 35delG mutation in the GJB2 gene (DFNB1). Patients in two other branches (A and B) carry two new mutations in the cadherin 23 ( CDH23) gene (DFNB12). A homozygous CDH23 c.6442G-->A (D2148N) mutation is present in branch A. Patients in branch B are compound heterozygous for this mutation and the c.4021G-->A (D1341N) mutation. The substituted aspartic acid residues are highly conserved and are part of the calcium-binding sites of the extracellular cadherin (EC) domains. Molecular modeling of the mutated EC domains of CDH23 based on the structure of E-cadherin indicates that calcium-binding is impaired. In addition, other aspartic and glutamic acid residue substitutions in the highly conserved calcium-binding sites reported to cause DFNB12 are also likely to result in a decreased affinity for calcium. Since calcium provides rigidity to the elongated structure of cadherin molecules enabling homophilic lateral interaction, these mutations are likely to impair interactions of CDH23 molecules either with CDH23 or with other proteins. DFNB12 is the first human disorder that can be attributed to inherited missense mutations in the highly conserved residues of the extracellular calcium-binding domain of a cadherin.  相似文献   

11.
The genetic nature of sensorineural hearing loss (SNHL) has so far been studied for many ethnic groups in various parts of the world. The single-nucleotide guanine deletion (35delG) of the GJB2 gene coding for connexin 26 was shown to be the main genetic cause of autosomal recessive deafness among Europeans. Here we present the results of the first study of GJB2 and three mitochondrial mutations among two groups of Belarusian inhabitants: native people with normal hearing (757 persons) and 391 young patients with non-syndromic SNHL. We have found an extremely high carrier frequency of 35delG GJB2 mutation in Belarus -5.7%. This point deletion has also been detected in 53% of the patients with SNHL. The 312del14 GJB2 was the second most common mutation in the Belarus patient cohort. Mitochondrial A1555G mt-RNR1 substitution was found in two SNHL patients (0.55%) but none were found in the population cohort. No individuals carried the A7445G mutation of mitochondrial mt-TS1. G7444A as well as T961G substitutions were detected in mitochondrial mt-RNR1 at a rate of about 1% both in the patient and population cohorts. A possible reason for Belarusians having the highest mutation carrier frequency in Europe 35delG is discussed.  相似文献   

12.
Mutations in the GJB2 (Connexin 26) gene are responsible for more than half of all cases of prelingual, recessive, inherited, nonsyndromic deafness in Europe. This paper presents a mutation analysis of the GJB2 and GJB6 (Connexin 30) genes in 30 Greek Cypriot patients with sensorineural nonsyndromic hearing loss compatible with recessive inheritance. Ten of the patients (33.3%) had the 35delG mutation in the GJB2 gene. Moreover, 9 of these were homozygous for the 35delG mutation, whereas 1 patient was in the compound heterozygous state with the disease causing E47X nonsense mutation. Another patient with severe sensorineural hearing loss was heterozygous for the V153I missense mutation. Finally, no GJB6 mutations or the known del(GJB6-D13S1830) were identified in any of the investigated Greek Cypriot nonsyndromic hearing loss patients. This work confirms that the GJB2 35delG mutation is an important pathogenic mutation for hearing loss in the Greek Cypriot population. This finding will be used toward the effective diagnosis of nonsyndromic hearing loss, improve genetic counseling, and serve as a potential therapeutic platform in the future for the affected patients in Cyprus.  相似文献   

13.
Deafness is a heterogeneous disorder showing different patterns of inheritance and involving a multitude of different genes. Mutations in the GJB2 gene encoding connexin 26 (Cx26) protein are a major cause for non-syndromic autosomal recessive and sporadic deafness. Among these mutations, the c.35delG deletion is the most common mutation for sensorineural deafness. One hundred sixteen persons from fifty-eight families were tested by the method based on the principle of PCR-mediated-site-directed mutagenesis (PSDM), followed by a Bsl1 digestion. Mutation c.35delG was diagnosed in sixteen families (11 homozygotes and 5 heterozygotes). The low allelic frequency (17.24%) and low ratio of individuals homozygous (13.8%) and heterozygous (6.9%) for the c.35delG mutation suggest that there are other mutations in the GJB2 gene or other genes responsible for deafness in the Algerian population. This study reports a significant association (P=0.003) between first cousin consanguinity and non-syndromic prelingual deafness.  相似文献   

14.
Mutations in the GJB2 (connexin 26-Cx26) gene are responsible for 20-50% of cases with prelingual non-syndromic deafness in a large part of the world including Turkey. Although most of the cases with Cx26 deafness have a recessive mode of inheritance, a small group of families demonstrated dominant or pseudodominant inheritance. In this report we present a Turkish family in which the proband had congenital profound deafness and was found to be homozygous for the 35delG mutation, whereas the father and a paternal uncle who had milder, late-onset sensorineural hearing loss had compound heterozygous 35delG and L90P mutations. This family and previous reports with the L90P mutation demonstrate that the hearing loss associated with the L90P/35delG genotype is consistently milder than that of 35delG homozygotes. GJB2 gene screening should be considered in families with seemingly dominant inheritance and late-onset moderate hearing loss.  相似文献   

15.
Mutations in the Connexin-26 (specified GJB2) gene have been shown to be a major cause of nonsyndromic recessive deafness (NSRD), and a single mutation 35delG in the GJB2 gene accounts for the majority of cases of NSRD. For diagnostic analyses and for scientific studies of large numbers of patients, fast and economic assays that can be performed with standard polymerase chain reaction (PCR) instruments are highly desirable. We have developed an allele-specific amplification (ASA)-based restriction fragment length polymorphism (RFLP) assay. We evaluated the multiplex method for its ability to 35delG mutation. Our method is a stable, reproducible and concordend with previously reported PCR-RFLP assays.  相似文献   

16.
宋书娟  闫明  王小竹  章远志  邹俊华  钟南 《遗传》2007,29(7):800-804
在两个X连锁显性腓骨肌萎缩症(Charcot-Marie-Tooth disease, CMT) 家系中进行了GJB1基因的突变分析。提取基因组DNA, PCR(polymerase chain reaction)反应扩增GJB1基因编码序列, 进行单链构象多态性(single strand conformational polymorphism, SSCP)分析, 对有差异SSCP带型的PCR产物进行测序, 结果在两家系中发现同一GJB1基因c.622G→A (Glu208Lys)突变。所发现的突变位点在国内尚未报道。  相似文献   

17.
Severe to profound hearing impairment affects 1 of every 1000 newborn children each year. Inheritance accounts for 60% of these cases, of which 70% are nonsyndromic. The most common cause of autosomal recessive nonsyndromic hearing loss (ARNSHL) is mutation in GJB2, a gene on chromosome 13, which encodes a gap junction protein named Connexin 26. Mutations in GJB2 are responsible for 40% of genetic childhood deafness. The most common mutation, 35delG, predominates in many ethnic groups. Some families with linkage to the DFNB1 locus have none or only one mutated allele in GJB2, however, some subjects can exhibit a large deletion in another connexin gene, GJB6, resulting in a monogenic or digenic pattern of inheritance in this complex DFNB1 locus that contains both genes (GJB2 and GJB6). The aim of the study was to determine (1) the frequency for the 35delG (27.5%), del(GJB6-D13S1830) (2.5%) and del(GJB6-D13S1854) (0.0%) mutations in a cohort of 40 Venezuelan patients with ARNSHL and (2) the carrier frequency 35delG (4%), del(GJB6-D13S1830) (0%) and del(GJB6-D13S1854) (0%) in the Venezuelan population with no familial history of hearing impairment. One patient (2.5%) was detected as double heterozygote for the deletion del(GJB6-D13S1830) and 35delG mutation. This result has direct clinical implications because we include the molecular detection of the deletion del(GJB6-D13S1830) during the evaluation of the diagnosis of deafness in the Venezuelan population.  相似文献   

18.
We report an analysis of 102 unrelated Polish patients with profound prelingual deafness for mutations in the GJB2 gene (OMIM #220290). Mutations were found in 41/102 (40%) subjects. Among mutated alleles, 35delG was prevalent and present in 88%. In nine alleles, different mutations were found: M34T, Q47X, R184P, and 313del14 (found in 6 patients). The results prove mutations in the GJB2 gene are responsible for much hereditary nonsyndromic deafness in Poland, with a strong prevalence of the 35delG mutation. We have also found a high carrier frequency (1/50) for the 35delG mutation in the Polish population.  相似文献   

19.
Deafness is a complex disorder that is affected by a high number of genes and environmental factors. Recently, enormous progress has been made in nonsyndromic deafness research, with the identification of 90 loci and 33 nuclear and 2 mitochondrial genes involved (http://dnalab-www.uia.ac.be/dnalab/hhh/). Mutations in the GJB3 gene, encoding the gap junction protein connexin 31 (Cx31), have been pathogenically linked to erythrokeratodermia variabilis and nonsyndromic autosomal recessive or dominant hereditary hearing impairment. To determine the contribution of the GJB3 gene to sporadic deafness, we analysed the GJB3 gene in 67 families with nonsyndromic hearing impairment. A single coding exon of the GJB3 gene was amplified from genomic DNA and then sequenced. Here we report on three amino acid changes: Y177D (c.529T > G), 49delK (c.1227C > T), and R32W (c.144-146delGAA). The latter substitution has been previously described, but its involvement in hearing impairment remains uncertain. We hypothesize that mutations in the GJB3 gene are an infrequent cause of nonsyndromic deafness.  相似文献   

20.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of 16 Chinese pedigrees (a total of 246 matrilineal relatives) with aminoglycoside-induced impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: being bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss, ranging from 4% to 18%, with an average of 8%. In particular, nineteen of 246 matrilineal relatives in these pedigrees had aminoglycoside-induced hearing loss. Mutational analysis of the mtDNA in these pedigrees showed the presence of homoplasmic 12S rRNA A1555G mutation, which has been associated with hearing impairment in many families worldwide. The extremely low penetrance of hearing loss in these Chinese families carrying the A1555G mutation strongly supports the notion that the A1555G mutation itself is not sufficient to produce the clinical phenotype. Children carrying the A1555G mutation are susceptible to the exposure of aminoglycosides, thereby inducing or worsening hearing impairment, as in the case of these Chinese families. Using those genetic and molecular approaches, we are able to diagnose whether children carry the ototoxic mtDNA mutation. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside therapy, and eventually to decrease the incidence of deafness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号