首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dorycnium hirsutum (L.) Ser. and Dorycnium rectum (L.) Ser. are Mediterranean perennial legumes that may have potential as alternative forage plants to Medicago sativa (lucerne, alfalfa) for low rainfall dryland agriculture. Strategies for surviving periods of water deficit are vital for perennial plants in water-limited environments. This experiment compared leaf physiological and morphological adaptations to increasing water deficit among D. hirsutum, D. rectum and M. sativa. Plants were grown in the glasshouse in large pots (7.8 L, 1 m deep, 10 cm diameter) containing a sandy clay loam (14% available water content) to limit differences between root foraging among the species. Watering was withheld for 21 days and predawn and midday leaf water and osmotic potential were determined. Mid-morning rates of gas exchange were measured at five times as soil water was depleted. After 35 days of withholding water, plant recovery was measured. D. hirsutum and M. sativa reduced stomatal conductance at leaf water potentials below −1.8 MPa and water-stressed D. hirsutum osmotically adjusted by up to 0.68 MPa. D. rectum differed from the other species; leaf water potential was maintained at high levels until soil water content had reached low levels, and reductions in stomatal conductance and photosynthesis were not associated with leaf water potential. D. hirsutum and M. sativa displayed leaf morphological adaptations that may contribute to greater resistance of water deficit. Only one of five D. rectum plants survived the water-stress treatment compared to five of five for D. hirsutum and four of five for M. sativa. The water relations and physiology of D. hirsutum observed in this study suggest that it possesses adaptations suitable for arid environments. On the other hand, the poor survival and water relations of D. rectum indicate that it is poorly adapted to situations where water deficit is common.  相似文献   

2.
Two gramineous species among wild plants, Echinochloa oryzicola Vasing and Setaria viridis (L.) Beauv., and Oryza sativa L. cv. Nipponbare were subjected to salt stress. The relative growth rate (RGR), Na content, photosynthetic rate, antioxidant enzymes activity (superoxide disumutase (SOD), catalase (CAT), ascorbate peroxidase (APx) and glutathione reductase (GR)), and malondialdehyde (MDA) content in leaves after NaCl treatment were studied. RGR significantly decreased in O. sativa more than in E. oryzicola and S. viridis. Comparatively salt-tolerant S. viridis showed higher growth rate, lower Na accumulation rate in leaves, higher photosynthetic rate, and induced more SOD, CAT, APx, and GR activity and lower increase of MDA content as compared to the salt-sensitive O. sativa. At the same time, the comparatively salt-tolerant E. oryzicola also showed higher growth rate, much lower Na accumulation and no observable increase of MDA content, even though the CAT and APx activities were not induced by salinity. These results suggested that the scavenging system induced by H2O2-mediated oxidative damage might, at least in part, play an important role in the mechanism of salt tolerance against cell toxicity of NaCl in some gramineous plants  相似文献   

3.
To evaluate oxidative stress and the plant antioxidant system of Alternanthera philoxeroides [Mart.] Griseb and Oryza sativa L. in the response to drought, root and leaf tissues of drought-treated A. philoxeroides and O. sativa were collected and relative water content, stomatal conductance, the concentrations of malondialdehyde, proline and the activities of superoxide dismutase, peroxidases, catalase and total antioxidative activity investigated. The results showed that drought treatment had almost no effect on relative water content in A. philoxeroides but reduced relative water content in O. sativa. A. philoxeroides maintained a greater stomatal conductance than O. sativa under drought stress. In A. philoxeroides levels of lipid peroxidation were lower than in O. sativa and did not change during the experiment. After exposure to drought, concentrations of proline and activities of superoxide dismutase, peroxidases and catalase in A. philoxeroides were between 10% and 30% higher than in O. sativa, whereas total antioxidative activity in A. philoxeroides was several-fold higher than in O. sativa.  相似文献   

4.
Zhu YJ  Agbayani R  Moore PH 《Planta》2007,226(1):87-97
Phytophthora spp., some of the more important casual agents of plant diseases, are responsible for heavy economic losses worldwide. Plant defensins have been introduced as transgenes into a range of species to increase host resistance to pathogens to which they were originally susceptible. However, the effectiveness and mechanism of interaction of the defensins with Phytophthora spp. have not been clearly characterized in planta. In this study, we expressed the Dahlia merckii defensin, DmAMP1, in papaya (Carica papaya L.), a plant highly susceptible to a root, stem, and fruit rot disease caused by Phytophthora palmivora. Extracts of total leaf proteins from transformed plants inhibited growth of Phytophthora in vitro and discs cut from the leaves of transformed plants inhibited growth of Phytophthora in a bioassay. Results from our greenhouse inoculation experiments demonstrate that expressing the DmAMP1 gene in papaya plants increased resistance against P. palmivora and that this increased resistance was associated with reduced hyphae growth of P. palmivora at the infection sites. The inhibitory effects of DmAMP1 expression in papaya suggest this approach has good potential to impart transgenic resistance against Phytophthora in papaya.  相似文献   

5.
The dwarf pomegranate (Punica granatum L. var. nana) is a dwarf ornamental plant that has the potential to be the model plant of perennial fruit trees because it bears fruits within 1 year of seedling. We established an Agrobacterium-mediated transformation system for the dwarf pomegranate. Adventitious shoots regenerated from leaf segments were inoculated with A. tumefaciens strain EHA105 harboring the binary vector pBin19-sgfp, which contains neomycin phosphotransferase (npt II) and green fluorescent protein (gfp) gene as a selectable and visual marker, respectively. After co-cultivation, the inoculated adventitious shoots were cut into small pieces to induce regeneration, and then selected on MS medium supplemented with 0.5 μM α-naphthaleneacetic acid (NAA), 5 μM N6-benzyladenine (BA), 0.3% gellan gum, 50 mg/l kanamycin, and 10 mg/l meropenem. Putative transformed shoots were regenerated after 6–8 months of selection. PCR and PCR-Southern blot analysis revealed the integration of the transgene into the plant genome. Transformants bloomed and bore fruits within 3 months of being potted, and the inheritance of the transgene was confirmed in T1 generations. The advantage of the transformation of dwarf pomegranate was shown to be the high transformation rate. The establishment of this transformation system is invaluable for investigating fruit-tree-specific phenomena.  相似文献   

6.
Biocontrol of the root-knot nematode Meloidogyne javanica was studied on lentil using plant growth-promoting rhizobacteria (PGPR) namely Pseudomonas putida, P. alcaligenes, Paenibacillus polymyxa and Bacillus pumilus and root nodule bacterium Rhizobium sp. Pseudomonas putida caused greater inhibitory effect on the hatching and penetration of M. javanica followed by P. alcaligenes, P. polymyxa and B. pumilus. Inoculation of any PGPR species alone or together with Rhizobium increased plant growth both in M. javanica-inoculated and -uninoculated plants. Inoculation of Rhizobum caused greater increase in plant growth than caused by any species of plant growth-promoting rhizobacteria in nematode-inoculated plants. Among PGPR, P. putida caused greater increase in plant growth and higher reduction in galling and nematode multiplication followed by P. alcaligenes, P. polymyxa and B. pumilus. Combined use of Rhizobium with any species of PGPR caused higher reduction in galling and nematode multiplication than their individual inoculation. Use of Rhizobium plus P. putida caused maximum reduction in galling and nematode multiplication followed by Rhizobium plus P. alcaligens. Pseudomonas putida caused greater root colonization and siderophore production followed by P. alcaligenes, P. polymyxa and B. pumilus. Analysis of the protein bands of these four species by SDS-PAGE revealed that P. putida had a different protein band profile compared to the protein profiles of P. alcaligenes, P. polymyxa and B. pumilus. However, the protein profiles of P. acaligenes, P. polymyxa and B. pumilus were similar.  相似文献   

7.
Eupatorium adenophorum is one of the more noxious invasive plants worldwide. However, the mechanisms underlying its invasiveness are still not well elucidated. In this study, we compared the invader with its two native congeners (E. heterophyllum and E. japonicum) at four irradiances in terms of growth, biomass allocation, morphology, and photosynthesis. The higher light-saturated photosynthetic rate (P max) and total leaf area of the invader may contribute to its higher relative growth rate (RGR) and total biomass compared with its native congeners. Total biomass and RGR increased significantly with the increase of P max and total leaf area. The higher support organ mass fraction and the lower root mass fraction of the invader may also contribute to its higher RGR and biomass through increasing carbon assimilation and reducing respiratory carbon loss, respectively. The higher growth rate of the invader increased its total leaf area, ramet number, and crown area. These traits may help the invader to form dense monoculture, outshading native plant species. However, consistently higher leaf area ratio, specific leaf area, and leaf mass fraction were not found across irradiances for the invader compared with its native congeners. Higher plasticity in response to irradiance was also not found for the invader. The invader retained advantages over the natives across irradiances, while its performance decreased with lower irradiance. The results indicate that the invader may be one of the few super invaders. Reducing irradiance may inhibit its invasions.  相似文献   

8.
Summary Protoplasts were isolated from Agrobacterium rhizogenes A4-transformed cell line of Medicago sativa L. The highest yield of protoplasts (4.2×106 per g fresh weight) was obtained from 12-d-old calluses after being subeultured on fresh medium. The viability of protoplasts reached over 80%. Protoplasts were induced to undergo sustained divisions when cultured in Durand et al. (DPD) medium supplemented with 2 mgl−1 (9.05 μM) 2,4-dichlorophenoxyacetic acid, 0,2mgl−1 (0.93 μM) kinetin, 0.3 M mannitol, 2% (w/v) sucrose, and 500 mgl−1 casein hydrolyzate at a plating density of 1.0×105 per ml. An agarose-beads culture method was appropriate for protoplast division of transformed alfalfa. The division frequency was about 30%. Numerous hairy roots were induced from protocalluses on Murashige and Skoog medium without growth regulators. Paper electrophoresis revealed that all of the regenerated hairy roots tested synthesized the corresponding opines. This protoplast culture system would be valuable for further somatic hybridization in forage legumes.  相似文献   

9.
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule, the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and secondary inflorescence.  相似文献   

10.
Summary In wild-type Scopolia parvilfora (Solanaceae) tissues, only the roots express the enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53), which is the first specific precursor of the tropane alkaloids. Moreover, the tropanane alkaloid levels were the highest in the root (0.9 mg g−1 on a dry weight basis), followed by the stem and then the leaves. We metabolically engineered S. parviflora by introducing the tobacco pmt gene into its genome by a binary vector system that employs disarmed Agrobacterium rhizogenes. The kanamycin-resistant hairy root lines were shown to bear the pmt gene and to overexpress its mRNA and protein product by at least two-fold, as determined by polymerase chain reaction (PCR) and Northern and Western blottings, respectively. The transgenic lines also showed higher PMT activity and were morphologically aberrant in terms of slower growth and the production of lateral roots. The overexpression of pmt markedly elevated the scopolamine and hyoscyamine levels in the transgenic lines that showed the highest pmt mRNA and PMT protein levels. Thus, overexpression of the upstream regulator of the tropane alkaloid pathway enhanced the biosynthesis of the final product. These observations may be useful in establishing root culture systems that generate large yields of tropane alkaloids. These authors contributed equally to this paper (co-first authors).  相似文献   

11.
Propagation by softwood canes and cuttings is preferred as a practical system for vegetative reproduction of many ornamental plant species, despite the advances in tissue culture techniques. Dracaena purplecompacta L. is a species that has a high demand for exports. Conversely, coconut water (CW) is a rich supplement that naturally contains plant growth regulators such as indole acetic acid (IAA). The objective of this work was to evaluate the potential of CW extracts containing natural IAA, on adventitious root development in vegetative propagation of ornamental plant canes of D. purplecompacta L. Five different concentrations (28, 57, 143, 286, 571 μM of natural IAA) of CW extracts were tested. Another set of treatment was carried out with the same concentrations of authentic IAA hormone for comparison purpose. The 143-μM IAA CW extract recorded the best root induction and development. It was found that the root expression was faster (5 weeks) with the use of the novel method. In the conventional method, the canes are propagated by quick dip application of commercial product containing artificial hormone IAA and placing them on coir fiber dust beds. It takes up to 6 weeks for the canes to develop adventitious roots to the desired level. Steeping canes in 143-μM IAA CW extract improved rooting in D. purplecompacta L., and it was comparable to the application of 143-μM authentic IAA. The study indicates that adventitious root development, shoot development, and leaf emergence of D. purplecompacta L. is promoted by IAA CW extracts.  相似文献   

12.
In vitro culture is an important aid for ex situ conservation of rare, endemic or threatened plants. In this work, we establish an efficient method for the seed germination, seedling development, and axillary shoot propagation of Centaurea zeybekii Wagenitz. The seeds, collected from a wild population, were surface sterilised and cultured on various in vitro germination media. The effects of photoperiod and temperature on seed germination were also investigated. Germinations were obtained after 6 weeks in culture and the radicle emergence was evaluated as a main indicator. A high frequency of germination was obtained on distilled water supplemented with vitamines and 1 mg/L GA3. Although the seed germination frequencies were not affected by photoperiod, the highest germination frequency was obtained at 24 ± 2°C. A high frequency of axillary shoot proliferation was produced on MS medium supplemented with 1 mg/L BA. Then, the axillary shoots were separated and transferred to MS medium with or without plant growth regulators for rooting. Rhizogenezis was promoted after 6 weeks only in MS and 1/2 MS media containing 0.5 mg/L IBA. The rooting process was very slow and the percentage of shoot rooting was also very low (15%). The present study not only enables reinforcement of wild plant populations using ex situ growth of individuals, but it also helps to large number of aseptic seedling to use it in clonaly micropropagation studies.  相似文献   

13.
A micropropagation approach was developed for nine ornamental Prunus species, P. americana, P. cistena, P. glandulosa, P. serrulata ‘Kwanzan’, P. laurocerasus, P. sargentii, P. tomentosa, P. triloba, P. virginiana ‘Schubert’, commercially important in North America, and GF305 peach, commonly used for Prunus virus indexing. The micropropagation cycle based on proliferation of vegetative tissues includes establishment of tissue culture through introduction of shoot meristems in vitro, shoot proliferation, root induction and plant acclimatization steps and can be completed in 5 months. A meristem sterilization protocol minimized bacterial and fungal contamination. Multiple shoot formation in ornamental Prunus was obtained through the use of 1 mg l−1 6-benzyladenine. For GF305 peach, alteration in the sugar composition, fructose instead of sucrose, and addition of 1 mg l−1 ferulic acid had a significant impact on the shoot proliferation rate and maintenance of long-term in vitro culture. Rooting and plant acclimatization conditions were improved using a two-step protocol with a 4-day root induction in indole-3-butiric acid (IBA)-containing media with consequent 3-week root elongation in IBA-free media. One-month incubation of rooted shoots in a vermiculite-based medium resulted in additional shoot and root growth and provided better acclimatization and plant recovery. The micropropagation approach can be used for maintenance of the clonal properties for Prunus spp. as well as a protocol to support meristem therapy against viral infection.  相似文献   

14.
15.
Studies were conducted on the host searching behavior of the larval parasitoid Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) and the pupal parasitoid Dentichasmias busseolae Heinrich (Hymenoptera: Ichneumonidae), both of which attack lepidopteran (Crambidae, Noctuidae) cereal stemborers. The behavior of D. busseolae was observed in a diversified habitat that consisted of stemborer host plants (maize, Zea mays L. and sorghum, Sorghum bicolor (L). Moench (Poaceae)) and a non-host plant (molasses grass, Melinis minutiflora Beauv. (Poaceae)), while C. sesamiae was observed separately on host plants and molasses grass. In previous olfactometer studies, C. sesamiae was attracted to molasses grass volatiles while hboxD. busseolae was repelled. The aim of the present study was to investigate the influence of molasses grass on close-range foraging behavior of the parasitoids in an arena that included infested and uninfested host plants. Dentichasmias busseolae strongly discriminated between host and non-host plants, with female wasps spending most of the time on infested host plants and least time on molasses grass. Likewise, C. sesamiae spent more time on uninfested and infested host plants than it did on molasses grass in single choice bioassays. While on infested plants, the wasps spent more time foraging on the stem, the site of damage, than on other areas of the plant. Overall, the results indicate that presence of the non-host plant does not hinder close range foraging activities of either parasitoid.  相似文献   

16.
An endophytic fungus, F-23, was isolated from the roots of Dendrobium officinale Kimura et Migo, an endangered Chinese medicinal plant. The sequence of the ITS region indicated that the isolate belongs to the genus Mycena. After 4 months of inoculation, the root systems of D. officinale that were inoculated with F-23 fungus were much larger than the control’s root systems. We also observed that the hyphae of F-23 penetrated the epidermal cells within the host’s roots and spread from cell to cell. A large number of pelotons existed in the root cortical cells of D. officinale inoculated with F-23 fungus. Intracellular hyphae crossing through the host walls were also observed using SEM (scanning electron microscopy). In contrast, light microscopy and SEM showed that the transverse sections of the roots of control plants remained uncolonized. Therefore, the F-23 fungus can form mycorrhizal associations with the roots of its host plant, D. officinale, and enhance the growth of seedlings and roots. In brief, Mycena sp. was identified and shown to be a mycorrhizal fungus of the epiphytic orchid, D. officinale. This might be of potential use to the mass cultivation of D. officinale under artificial conditions.  相似文献   

17.
Zhou L  Cao X  Zhang R  Peng Y  Zhao S  Wu J 《Biotechnology letters》2007,29(4):631-634
Two oligosaccharides, a heptasaccharide (HS) and an octasaccharide (OS), isolated from Paris polyphylla var. yunnanensis, stimulated the growth and saponin accumulation of Panax ginseng hairy roots at 5–30 mg l−1. HS and OS at 30 mg l−1, fed separately to hairy root cultures at 10 days post-inoculation, increased the root biomass dry weight by more than 70% to ∼20 g l−1 from 13 g l−1 and the total saponin content of roots by more than 1-fold to ∼3.5% from 1.6% (w/w). The results suggest that the two oligosaccharides may have plant growth-regulatory activity in plant tissue cultures.  相似文献   

18.
The aim of the investigation reported here was to assess the role of gibberellin in cotton fiber development. The results of experiments in which the gibberellin (GA) biosynthesis inhibitor paclobutrazol (PAC) was tested on in vitro cultured cotton ovules revealed that GA is critical in promoting cotton fiber development. Plant responses to GA are mediated by DELLA proteins. A cotton nucleotide with high sequence homology to Arabidopsis thaliana GAI (AtGAI) was identified from the GenBank database and analyzed with the BLAST program. The full-length cDNA was cloned from upland cotton (Gossypium hirsutum, Gh) and sequenced. A comparison of the putative protein sequence of this cDNA with all Arabidopsis DELLA proteins indicated that GhRGL is a putative ortholog of AtRGL. Over-expression of this cDNA in Arabidopsis plants resulted in the dwarfed phenotype, and the degrees of dwarfism were related to the expression levels of GhRGL. The deletion of 17 amino acids, including the DELLA domain, resulted in the dominant dwarf phenotype, demonstrating that GhRGL is a functional protein that affects plant growth. Real-time quantitative PCR results showed that GhRGL mRNA is highly expressed in the cotton ovule at the elongation stage, suggesting that GhRGL may play a regulatory role in cotton fiber elongation.  相似文献   

19.
Cheng Y  Long M 《Biotechnology letters》2007,29(7):1129-1134
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings.  相似文献   

20.
Simple method of Arabidopsis thaliana w.t. cv. Columbia (L.) Heynh. cultivation in liquid nutrient medium is presented. After 5 weeks of growth in soil, the plants were transferred to modified Hoagland nutrient medium. This allowed us to cultivate Arabidopsis in conditions comparable to all other hydroponically grown higher plants used in plant physiology and plant stress physiology experiments. Absence of agar in growth medium and free access to whole root system makes this method useful also in experiments concerning root physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号