首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The majority of gastric cancers express high levels of human telomerase template RNA (hTR) that is essential for cellular survival. In this study, we examined whether antisense hTR (ahTR) had a growth inhibitory effect on three gastric cancer cell lines, MKN-1, MKN-28, and TMK-1, through transfection via an ahTR expression vector. Both the ahTR transfected MKN-1 and TMK-1 cells changed morphologically into multinucleate giant cells, and subsequently underwent cell death. Conversely, the ahTR transfected MKN-28 cells survived over 50 PDs in spite of telomere shortening. Surprisingly, high levels of telomerase activity were observed in the telomere-reduced cells. Furthermore, the expression of mRNAs for p21/Waf1/Cip1/Sdi1, IRF-1 and IFN inducible 6-16 was higher in the telomere-reduced cells than in the parental cells. These results suggest overall that the ahTR expression may bring about telomere shorting, leading to cell death or cellular senescence in gastric cancer cells.  相似文献   

2.
Eugenol, a natural compound available in honey and various plants extracts including cloves and Magnoliae flos, is exploited for various medicinal applications. Since most of the drugs used in the cancer are apoptotic inducers, the apoptotic effect and anticancer mechanism of eugenol were investigated against colon cancer cells. Antiproliferative effect was estimated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay]. Earlier events like MMP (mitochondrial membrane potential), thiol depletion and lipid layer break were measured by using flow cytometry. Apoptosis was evaluated using PI (propidium iodide) staining, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay and DNA fragmentation assay. MTT assay signified the antiproliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyses. Our results demonstrated molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemopreventive agent against colon cancer.  相似文献   

3.
Summary While lectins are known to influence the cell growth of several types of normal and neoplastic tissues, their roles in the case of prostatic cancer cells remain relatively unexplored. In the present work, we report thein vitro influence of five lectins, namely peanut (PNA), wheat germ (WGA), Concanavalin A (Con A),Griffonia simplicifolia (GSA-IA4), andPhaseolus vulgaris (PHA-L) agglutinins, on the cell proliferation of one androgen-sensitive (LNCaP) and two androgen-insensitive (PC-3 and DU 145) human prostatic cancer cell lines cultured in either 10% or 1% fetal bovine serum (FBS)-supplemented media. The cell proliferation was assessed by means of the colorimetric 3-(4,5-dimethythiazol-2-yle)2,5-diphenyltetrazolium bromide. (MTT) assay. Four lectin concentrations were tested (i.e., 0.1, 1, 10, and 100 μg/ml) at five experimental states (i.e., 2, 3, 5, 7, and 9 d following the addition of each lectin to the culture media). Our results demonstrated that the five lectins under study had a globally significant dose-dependent toxic effect on prostatic cancer cell proliferation. Nevertheless, low doses of GSA-IA4 and PHA-L significantly (P<0.05 toP<0.001) increased the cell proliferation of confluent PC-3 cells. Increasing the FBS from 1% to 10% in the culture media significantly antagonized lectin-induced toxicity in the three prostatic cell lines. In conclusion, the present data strongly suggest that some lectins might influence the proliferation of prostatic carcinoma cells. In addition, because lectins are present in our diet, and are able to pass into the systemic circulation and thus reach the prostate, the present results suggest that some lectins might exert an influence on prostate cancer growth under clinical conditions.  相似文献   

4.
Retinoid resistance has limited the clinical application of retinoids as differentiation-inducing and apoptosis-inducing drugs. This study was designed to investigate whether celecoxib, a selective COX-2 inhibitor, has effects on retinoid sensitivity in human colon cancer cell lines, and to determine the possible mechanism of said effects. Cell viability was measured using the MTT assay. Apoptosis was detected via Annexin-V/PI staining and the flow cytometry assay. PGE2 production was measured with the ELISA assay. The expression of RARβ was assayed via western blotting. The results showed that celecoxib enhanced the inhibitory effect of ATRA in both COX-2 high-expressing HT-29 and COX-2 low-expressing SW480 cell lines. Further study showed the ATRA and celecoxib combination induced greater apoptosis, but that the addition of PGE2 did not affect the enhanced growth-inhibitory and apoptosis-inducing effects of the combination. Moreover, NS398 (another selective COX-2 inhibitor) did not affect the inhibitory effects of ATRA in the two cell lines. Western blotting showed that the expression of RARβ in HT-29 cell lines was increased by celecoxib, but not by NS398, and that the addition of PGE2 did not affect the celecoxib-induced expression of the retinoic acid receptor beta. In conclusion, celecoxib increased the expression of RARβ and the level of cellular ATRA sensitivity through COX-2-independent mechanisms. This finding may provide a potential strategy for combination therapy.  相似文献   

5.
The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 μM were incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size exclusion chromatography and ICP-MS detection. The selenium compounds exhibited large differences in their ability to induce cell death in the three cell lines and the susceptibilities of the cell lines were different. Full recovery of selenium in the cellular fractions was observed for all Se compounds except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein binding. Correlations between cell death induction and the Se compounds transformations could not be demonstrated.  相似文献   

6.
Ovarian cancer is the second most common gynecologic malignancy. Standard therapeutic approaches to this disease, surgery followed by chemotherapy, have produced response rates of up to 80%. However, the five-year survival rate remains around 30%. Recently, Tumor Necrosis Factor (TNF) has received attention as either an alternative or an associated agent for chemotherapy of ovarian cancer. TNF is known to have direct cytotoxic and cytostatic effects on a variety of transformed cell lines "in vitro". Furthermore, TNF is known to enhance significantly the "in vitro" effects of a class of chemotherapeutic agents, specifically those targeted at DNA topoisomerase II. In this work we have investigated TNF-induced cytotoxicity in four established human epithelial ovarian cancer cell lines: A-2774; SV-626; SKOV-3 and Pa-1. TNF mediated cytotoxic activity was observed in a range of concentrations between 1 U/ml and 10-3 U/ml. A-2774 and SV-626 were the two most sensitive lines, especially when exposed to high concentrations of TNF.  相似文献   

7.
The influence of three analogs of cyclic adenosine monophosphate (cAMP) and theophylline on growth of colon tumor cell lines HT 29, LIM 1215 and COLO 206F was assessed by serial estimates of cell number. Administration of theophylline or analog of cAMP 8-bromo cAMP (8-br-cAMP) to actively replicating cultures resulted in a decrease in cell number of each cell line. In contrast analogs of cAMP, dibutyryl cAMP (db-cAMP) and chlorophenylthio cAMP (cp-cAMP) caused an increase in cell number of each cell line. This variation between analogs makes it difficult to draw conclusions regarding the influence of cAMP on cell growth when analogs are used to mimic the biological role of cAMP.  相似文献   

8.
Effect of sodium butyrate on human breast cancer cell lines   总被引:2,自引:0,他引:2  
We have investigated the effects exerted by sodium butyrate (NaBu) on the growth and cell cycle perturbations of four human breast cancer cell lines (MCF7, T47D, MDA-MB231 and BT20) with different steroid receptor profiles. Moreover, since one of the supposed mechanisms of action for NaBu activity involves the induction of apoptosis, we have studied the effects of NaBu on DNA fragmentation by agarose gel electrophoresis and flow cytometry. In all investigated cell lines, NaBu exerted a time- and dose-dependent inhibition of growth and caused a maximum inhibitory effect (85% to 90%) at the concentration of 2.5 m m . The inhibition was already evident after 3 days of treatment. The antiproliferative effect of NaBu was associated with a persistent block of cells in the G2M phase. The block was associated with apoptosis only in oestrogen-receptor positive cell lines. The inhibiting effect of NaBu in hormone-dependent and independent cell lines and its ability to induce apoptosis through a cell cycle perturbation in hormone-dependent cell lines may have important implications in the treatment of human tumours including breast cancer.  相似文献   

9.
Althoughaccumulating evidence suggests a chemopreventive role for folic acid incolon cancer, the regulation of this process in unknown. We hypothesizethat supplemental folic acid exerts its chemopreventive role byinhibiting mucosal hyperproliferation, an event considered to becentral to the initiation of carcinogenesis in the gastrointestinaltract. The present investigation examines the effect of supplementalfolic acid on proliferation of Caco-2 and HCT-116 colon cancer celllines. Furthermore, because certain tyrosine kinases, particularlyepidermal growth factor receptor (EGFR), play a role in regulating cellproliferation, we also examined the folic acid-induced changes intyrosine kinase activity and expression of EGFR. In Caco-2 and HCT-116cells, maintained in RPMI 1640 medium containing 1 µg/ml folic acid,we observed that the supplemental folic acid inhibited proliferation ina dose-dependent manner. Pretreatment of HCT-116 and Caco-2 cell lineswith supplemental folic acid (1.25 µg/ml) completely abrogated transforming growth factor- (TGF-)-induced proliferation in bothcell lines. Tyrosine kinase activity and the relative concentration ofEGFR were markedly diminished in both cell lines following a 24-hexposure to supplemental folic acid. The folic acid-induced inhibitionof EGFR tyrosine kinase activity in colon cancer cell lines was alsoassociated with a concomitant reduction in the relative concentrationof the 14-kDa membrane-bound precursor form of TGF-. In conclusion,our data suggest that supplemental folic acid is effective in reducingproliferation in two unrelated colon cancer cell lines and that EGFRtyrosine kinase appears to be involved in regulating this process.

  相似文献   

10.
11.
12.
The cell lines SW480 and SW620, derived from different stages of colon carcinoma in the same patient, have been used for a number of biochemical, immunological, and genetic studies on colon cancer. A comparative analysis of their karyotypes may identify chromosomal aberrations that might represent markers for metastatic spread. In the present study spectral karyotyping (SKY) was applied to these two colon cancer cell lines. Compared to previously reported G-banded karyotypes, 9 (SW480) and 7 (SW620) markers were identical, 3 (SW480) and 3 (SW620) markers could be redefined, 5 (SW480) and 8 (SW620) markers were newly identified, and 4 (SW480) and 5 (SW620) of the previous described markers could not be confirmed. The redefined aberrations include very complex rearrangements, such as a der(16) t(3;16;1;16;8;16; 1;16;10) and a der(18)t(18;15;17)(q12; p11p13;??) in SW620 and a der(19)t(19;8;19;5) in SW480, that have not been identified by conventional banding techniques. The resulting chromosome gains (5q11-->5q15, 7pter-->q22, 11, 13q14-->qter, 20pter-->p12, X) and losses (8pter-->p2, 18q12-->qter, Y) found in both SW480 and SW620 were in good agreement with those frequently described in colorectal tumors as primary changes in the stem cell. Abnormalities found exclusively in SW620 cells only (gains of 5pter-->5q11, 12q12-->q23, 15p13-->p11, and 16q21-->q24 and losses of 2pter-->2p24, 4q28-->qter, and 6q25-->qter) can be viewed as changes that occurred in a putative metastatic founder cell.  相似文献   

13.
14.
Activin A has been reported to play a role in the progression of colorectal cancer. Because dietary fiber protects against colorectal cancer, we hypothesized that butyrate, a fermentation product of dietary fiber, may affect the expression of activin A in colon cancer cells. Semiquantitative RT-PCR demonstrated that the activin A gene was upregulated by sodium butyrate in the human colon cancer cell lines HT-29 and Caco-2 in a concentration- and time-dependent manner. However, the activin A gene did not respond to sodium butyrate in the human normal colonic cell line FHC, rat normal intestinal epithelial cell (IEC) line IEC-6, and the explant of rat colon. Flow cytometry and agarose gel electrophoresis of genomic DNA revealed that cell cycle arrest and apoptosis were induced by sodium butyrate but not exogenous activin A in HT-29 cells, indicating that activin A could not act as an autocrine factor in colon cancer cells. By assuming that activin A promotes colorectal cancer spread as a paracrine factor, our findings suggest that butyrate could act as a tumor promoter in some circumstances.  相似文献   

15.
Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the incidence of colon cancer, but their use is limited by toxicity in the gastrointestinal tract. The coupling of a nitric oxide-releasing moiety to NSAIDs strongly reduces these side effects. We demonstrated that the NO-releasing sulindac (nitrosulindac) has much more potent effects on colon adenocarcinoma cell lines compared to sulindac. Moreover, it could inhibit the growth of cells in soft agar experiments, demonstrating the antineoplastic activity at low concentration of nitrosulindac. However, this reduction in the growth of colon cancer cells seemed to be independent of the classical apoptosis pathway and could be explained by a cytostatic effect. Nitrosulindac caused a light perturbation of the cell cycle parameters not linked to a modification of the levels of p21 or the proliferating cell nuclear antigen. Moreover, neither sulindac, nor nitrosulindac, were able to inhibit the NF-kappa B pathway. These data suggested that nitrosulindac could be a better solution compared to other NSAIDs in the treatment of colon cancer.  相似文献   

16.
Apoptosis induced by selenium in human glioma cell lines   总被引:8,自引:0,他引:8  
Several studies have shown that selenium can inhibit tumorigenesis in tissues. However, little is known about the mechanism and the effect of selenium on DNA, especially in brain tumor cells. In this study we examined the biological effect of selenium on human glioma cell lines (A172 and T98G). Selenium exhibited an antiproliferative effect on these cell lines (and induced the typical ladder pattern of DNA fragmentation commonly found in apoptosis), which were prevented by catalase. Few effects of selenium on NTI4 fibroblasts were found. These findings demonstrate that selenium may induce, by apoptosis, cell death of human glioma cell lines, which are resulting from free radical oxygen forming.  相似文献   

17.
Two human colon cancer cell lines grown in tissue culture were found to have significantly different Nuclear Magnetic Resonance (NMR) relaxation times of water protons in the fresh, intact state and after fragmentation into subcellular fractions. Differences in the protein composition of the subcellular fractions were also demonstrated by protein analysis and gel chromatography. In further studies, these cell lines may be useful to investigate the biochemical basis for the disparity in relaxation times of water protons between tissues which constitutes the basis for Magnetic Resonance Imaging (MRI) tissue contrast.  相似文献   

18.
In this present study, the efficacy of metabolomics as a tool for tumor cell energetics for in vitro cell cultures was demonstrated with full competence for the first time by elucidating the anabolic and energy-yielding segments of glycolysis and glutaminolysis, which constitute a part of energy metabolism in tumor cells. By synchronizing colon cancer cells SW480 and SW620 in culture, the metabolome specific to cell cycle phases was analyzed using nuclear magnetic resonance spectroscopy. At the G1/S transition of the cell cycle (i.e. transition from cell growth to duplication of genetic material), the majority of the energy production was realized by glycolysis through a high channeling of glucose carbons towards lactate. During the late S phase, the majority of energy was produced by glutaminolysis through a high channeling of glutamine carbons towards lactate, while the glucose carbons were channeled towards bio-synthetic pathways. These results indicate that the metabolism of proliferating cells is heterogeneous throughout the cell cycle and can be better interpreted on the basis of different cell cycle phases. These findings could be exploited for the development of a tool for tumor diagnosis as well as for targeting tumors.  相似文献   

19.
ABSTRACT: BACKGROUND: Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound's action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. METHODS: Human cell lines were treated with lycopene (1-5 uM) for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL) and by DAPI. RESULTS: Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7) after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145) when cells were treated with lycopene. CONCLUSIONS: Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent. KEY WORDS: lycopene, cancer, bioactive compounds, cell cycle.  相似文献   

20.
We localized REG protein in Paneth cells and nonmature columnar cells of the human small intestinal crypts and speculated that this protein was associated with growth and/or differentiation. The aim of this study was to determine whether REG protein is present in two human colon cancer cell lines that exhibit enterocytic differentiation after confluence and to investigate changes in the level of its expression during growth and differentiation. Results were compared to those obtained on cells that remain undifferentiated. Western immunoblotting and immunofluorescence demonstrated the presence of REG protein in the three cell lines. With the antisera against human REG protein, the staining was diffusely spread throughout the cytoplasm at Day 2, and after Days 3-4 it appeared to have migrated to cell boundaries. After confluence, we observed only a punctate staining array along cell boundaries, which disappeared at Day 15. REG mRNA expression was demonstrated by RTPCR and REG mRNA hybridization until Day 13, but not after, in the three cell types. REG protein may be involved in cellular junctions. Its presence appears to be associated with the cell growth period and the protein must be downregulated when growth is achieved and differentiation is induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号