首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although heptahelical chemoattractant and chemokine receptors are known to play a significant role in the host immune response and the pathophysiology of disease, the molecular mechanisms and transient macroassemblies underlying their activation and regulation remain largely uncharacterized. We report herein real time analyses of molecular assemblies involving the formyl peptide receptor (FPR), a well described member of the chemoattractant subfamily of G protein-coupled receptors (GPCRs), with both arrestins and heterotrimeric G proteins. In our system, the ability to define and discriminate distinct, in vitro receptor complexes relies on quantitative differences in the dissociation rate of a fluorescent agonist as well as the guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) sensitivity of the complex, as recently described for FPR-G protein interactions. In the current study, we demonstrate a concentration- and time-dependent reconstitution of liganded, phosphorylated FPR with exogenous arrestin-2 and -3 to form a high agonist affinity, nucleotide-insensitive complex with EC(50) values of 0.5 and 0.9 microm, respectively. In contrast, neither arrestin-2 nor arrestin-3 altered the ligand dissociation kinetics of activated, nonphosphorylated FPR. Moreover, we demonstrated that the addition of G proteins was unable to alter the ligand dissociation kinetics or induce a GTP gamma S-sensitive state of the phosphorylated FPR. The properties of the phosphorylated FPR were entirely reversible upon treatment of the receptor preparation with phosphatase. These results represent to our knowledge the first report of the reconstitution of a detergent-solubilized, phosphorylated GPCR with arrestins and, furthermore, the first demonstration that phosphorylation of a nonvisual GPCR is capable of efficiently blocking G protein binding in the absence of arrestin. The significance of these results with respect to receptor desensitization and internalization are discussed.  相似文献   

2.
Receptor based signaling mechanisms are the primary source of cellular regulation. The superfamily of G protein-coupled receptors is the largest and most ubiquitous of the receptor mediated processes. We describe here the analysis in real-time of the assembly and disassembly of soluble G protein-coupled receptor-G protein complexes. A fluorometric method was utilized to determine the dissociation of a fluorescent ligand from the receptor solubilized in detergent. The ligand dissociation rate differs between a receptor coupled to a G protein and the receptor alone. By observing the sensitivity of the dissociation of a fluorescent ligand to the presence of guanine nucleotide, we have shown a time- and concentration-dependent reconstitution of the N-formyl peptide receptor with endogenous G proteins. Furthermore, after the clearing of endogenous G proteins, purified Galpha subunits premixed with bovine brain Gbetagamma subunits were also able to reconstitute with the solubilized receptors. The solubilized N-formyl peptide receptor and Galpha(i3) protein interacted with an affinity of approximately 10(-6) m with other alpha subunits exhibiting lower affinities (Galpha(i3) > Galpha(i2) > Galpha(i1) Galpha(o)). The N-formyl peptide receptor-G protein interactions were inhibited by peptides corresponding to the Galpha(i) C-terminal regions, by Galpha(i) mAbs, and by a truncated form of arrestin-3. This system should prove useful for the analysis of the specificity of receptor-G protein interactions, as well as for the elucidation and characterization of receptor molecular assemblies and signal transduction complexes.  相似文献   

3.
The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.  相似文献   

4.
Recent studies have highlighted the emergence of a class of G protein-coupled receptors that are internalized in an arrestin-independent manner. In addition to demonstrating that the N-formyl peptide receptor belongs in this family, we have recently shown that recycling of the receptor requires the presence of arrestins. To further elucidate mechanisms of arrestin-dependent regulation of G protein-coupled receptor processing, we examined the effects of altering the receptor-arrestin complex on ternary complex formation and cellular trafficking of the N-formyl peptide receptor by studying two active arrestin-2 mutants (truncated arrestin-2 [1-382], and arrestin-2 I386A, V387A, F388A). Complexes between the N-formyl peptide receptor and active arrestins exhibited higher affinity in vitro than the complex between the N-formyl peptide receptor and wild-type arrestin and furthermore were observed in vivo by colocalization studies using confocal microscopy. To assess the effects of these altered interactions on receptor trafficking, we demonstrated that active, but not wild-type, arrestin expression retards N-formyl peptide receptor internalization. Furthermore, expression of arrestin-2 I386A/V387A/F388A but not arrestin-2 [1-382] inhibited recycling of the N-formyl peptide receptor, reflecting an expanded role for arrestins in G protein-coupled receptor processing and trafficking. Whereas the extent of N-formyl peptide receptor phosphorylation had no effect on the inhibition of internalization, N-formyl peptide receptor recycling was restored when the receptor was only partially phosphorylated. These results indicate not only that a functional interaction between receptor and arrestin is required for recycling of certain G protein-coupled receptors, such as the N-formyl peptide receptor, but that the pattern of receptor phosphorylation further regulates this process.  相似文献   

5.
Arrestins regulate the signaling and endocytosis of many G protein-coupled receptors (GPCRs). It has been suggested that the functions of arrestins are dependent upon both the number and pattern of phosphorylation sites present in an activated GPCR. However, little is currently known about the relationships between the sites of receptor phosphorylation, the resulting affinities of arrestin binding, and the ensuing mechanisms of receptor regulation for any given GPCR. To investigate these interactions, we used an active truncated mutant of arrestin (amino acids 1-382) and phosphorylation-deficient mutants of the N-formyl peptide receptor (FPR). In contrast to results with wild type arrestins, the truncated arrestin-2 protein bound to the unphosphorylated wild type FPR, although with lower affinity and a low affinity for the agonist as revealed by competition studies with heterotrimeric G proteins. Using FPR mutants, we further demonstrated that the phosphorylation status of serines and threonines between residues 328-332 is a key determinant that regulates the affinity of the FPR for arrestins. Furthermore, we found that the phosphorylation status of serine and threonine residues between amino acids 334 and 339 regulates the affinity of the receptor for agonist when arrestin is bound. These results suggest that the agonist affinity state of the receptor is principally regulated by phosphorylation at specific sites and is not simply a consequence of arrestin binding as has previously been proposed. Furthermore, this is the first demonstration that agonist affinity of a GPCR and the affinity of arrestin binding to the phosphorylated receptor are regulated by distinct receptor phosphodomains.  相似文献   

6.
G protein-coupled receptors (GPCRs) are integral to cellular function in nearly all physiologic and many pathologic processes. GPCR signaling represents an intricate balance between receptor activation, inactivation (desensitization, internalization and degradation) and resensitization (recycling and de novo synthesis). Complex formation between phosphorylated GPCRs, arrestins and an ever-increasing number of effector molecules is known to regulate cellular function. Previous studies have demonstrated that, although N -formyl peptide receptor (FPR) internalization occurs in the absence of arrestins, FPR recycling is arrestin-dependent. Furthermore, FPR stimulation in the absence of arrestins leads to receptor accumulation in perinuclear endosomes and apoptosis. In this study, we show that the interaction of GPCR-bound arrestin with adaptor protein-2 (AP-2) is a critical anti-apoptotic event. In addition, AP-2 associates with the receptor-arrestin complex in perinuclear endosomes and is required for proper post-endocytic GPCR trafficking. Finally, we observed that depletion of endogenous AP-2 results in the initiation of apoptosis upon stimulation of multiple GPCRs, including P2Y purinergic receptors and CXCR2, but not CXCR4. We propose a model in which the abnormal accumulation of internalized GPCR-arrestin complexes in recycling endosomes, resulting from defective arrestin-AP-2 interactions, leads to the specific initiation of aberrant signaling pathways and apoptosis.  相似文献   

7.
The phosphorylation-dependent binding of arrestins to cytoplasmic domains of G protein-coupled receptors (GPCRs) is thought to be a crucial step in receptor desensitization. In some GPCR systems, arrestins have also been demonstrated to be involved in receptor internalization, resensitization, and the activation of signaling cascades. The objective of the current study was to examine binding interactions of members of the arrestin family with the formyl peptide receptor (FPR), a member of the GPCR family of receptors. Peptides representing the unphosphorylated and phosphorylated carboxyl terminus of the FPR were synthesized and bound to polystyrene beads via a biotin/streptavidin interaction. Using fluorescein-conjugated arrestins, binding interactions between arrestins and the bead-bound FPR carboxyl terminus were analyzed by flow cytometry. Arrestin-2 and arrestin-3 bound to the FPR carboxyl-terminal peptide in a phosphorylation-dependent manner, with K(d) values in the micromolar range. Binding of visual arrestin, which binds rhodopsin with high selectivity, was not observed. Arrestin-2-(1--382) and arrestin-3-(1--393), truncated mutant forms of arrestin that display phosphorylation-independent binding to intact receptors, were also observed to bind the bead-bound FPR terminus in a phosphorylation-dependent manner, but with much greater affinity than the full-length arrestins, yielding K(d) values in the 5--50 nm range. Two additional arrestin mutants, which are full-length but display phosphorylation-independent binding to intact GPCRs, were evaluated for their binding affinity to the FPR carboxyl terminus. Whereas the single point mutant, arrestin-2 R169E, displayed an affinity similar to that of the full-length arrestins, the triple point mutant, arrestin-2 I386A/V387A/F388A, displayed an affinity more similar to that of the truncated forms of arrestin. The results suggest that the carboxyl terminus of arrestin is a critical determinant in regulating the binding affinity of arrestin for the phosphorylated domains of GPCRs.  相似文献   

8.
Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. We report the first crystal structure of arrestin-3, solved at 3.0 Å resolution. Arrestin-3 is an elongated two-domain molecule with overall fold and key inter-domain interactions that hold the free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding a wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, which is consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and arrestin-3 we show that the presence of this loose structure is correlated with reduced arrestin selectivity for activated receptors, consistent with a conformational change in this β-sheet upon receptor binding.  相似文献   

9.
Prossnitz ER 《Life sciences》2004,75(8):893-899
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling molecules in the human genome. As such, they interact with numerous intracellular molecules, which can act either to propagate or curtail signaling from the receptor. Their primary mode of cellular activation occurs through heterotrimeric G proteins, which in turn can activate a wide spectrum of effector molecules, including phosphodiesterases, phospholipases, adenylyl cyclases and ion channels. Active GPCRs are also the target of G protein-coupled receptor kinases, which phosphorylate the receptors culminating in the binding of the protein arrestin. This results in rapid desensitization through inhibition of G protein binding, as well as novel mechanisms of cellular activation that involve the scaffolding of cellular kinases to GPCR-arrestin complexes. Arrestins can also serve to mediate the internalization of certain GPCRs, a process which plays an important role in regulating cellular activity both by mediating long-term desensitization through down regulation (degradation) of receptors and by recycling desensitized receptors back to the cell surface to initiate additional rounds of signaling. The mechanisms that regulate the subsequent intracellular trafficking of GPCRs following internalization are largely unknown. Recently however, it has become clear that the pattern of receptor phosphorylation and subsequent binding of arrestin play a critical role in the intracellular trafficking of internalized receptors, thereby dictating the ultimate fate of the receptor. In addition, arrestins have now been shown to be required for the recycling of GPCRs that are capable of internalizing through arrestin-independent mechanisms. This review will summarize recent advances in our understanding of the roles of arrestins in post-endocytic GPCR trafficking.  相似文献   

10.
Visual arrestin, betaarrestin1, and betaarrestin2 comprise a family of intracellular proteins that desensitize G protein-coupled receptors (GPCRs). In addition, betaarrestin1 and betaarrestin2 target desensitized receptors to clathrin-coated pits for endocytosis. Whether arrestins differ in their ability to interact with GPCRs in cells is not known. In this study, we visualize the interaction of arrestin family members with GPCRs in real time and in live cells using green fluorescent protein-tagged arrestins. In the absence of agonist, visual arrestin and betaarrestin1 were found in both the cytoplasm and nucleus of HEK-293 cells, whereas betaarrestin2 was found only in the cytoplasm. Analysis of agonist-mediated arrestin translocation to multiple GPCRs identified two major classes of receptors. Class A receptors (beta2 adrenergic receptor, mu opioid receptor, endothelin type A receptor, dopamine D1A receptor, and alpha1b adrenergic receptor) bound betaarrestin2 with higher affinity than betaarrestin1 and did not interact with visual arrestin. In contrast, class B receptors (angiotensin II type 1A receptor, neurotensin receptor 1, vasopressin V2 receptor, thyrotropin-releasing hormone receptor, and substance P receptor) bound both betaarrestin isoforms with similar high affinities and also interacted with visual arrestin. Switching the carboxyl-terminal tails of class A and class B receptors completely reversed the affinity of each receptor for the visual and non-visual arrestins. In addition, exchanging the betaarrestin1 and betaarrestin2 carboxyl termini reversed their extent of binding to class A receptors as well as their subcellular distribution. These results reveal for the first time marked differences in the ability of arrestin family members to bind GPCRs at the plasma membrane. Moreover, they show that visual arrestin can interact in cells with GPCRs other than rhodopsin. These findings suggest that GPCR signaling may be differentially regulated depending on the cellular complement of arrestin isoforms and the ability of arrestins to interact with other cellular proteins.  相似文献   

11.
On the origins of arrestin and rhodopsin   总被引:1,自引:0,他引:1  

Background  

G protein coupled receptors (GPCRs) are the most numerous proteins in mammalian genomes, and the most common targets of clinical drugs. However, their evolution remains enigmatic. GPCRs are intimately associated with trimeric G proteins, G protein receptor kinases, and arrestins. We conducted phylogenetic studies to reconstruct the history of arrestins. Those findings, in turn, led us to investigate the origin of the photosensory GPCR rhodopsin.  相似文献   

12.
G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) activate numerous cellular signals through the combined actions of G proteins, GPCR kinases, and arrestins. Although arrestins have traditionally been thought of as mediating GPCR desensitization, they have now been shown to play important roles in the internalization, trafficking, and signaling of many GPCRs. We demonstrate that in cells devoid of arrestins, the stimulation of numerous GPCRs including the N-formyl peptide receptor (FPR) initiates rapid cell rounding, annexin V positivity, and caspase activation followed by cell death. The apoptotic response is initiated by G protein signaling and involves activation of phosphoinositide 3-kinase, mitogen-activated protein kinases, and c-Src resulting in cytochrome c release from mitochondria and ultimately caspase 9 and caspase 3 activation. Reconstitution with either arrestin-2 or arrestin-3 is completely sufficient to prevent FPR-mediated apoptosis. Surprisingly, a non-desensitizing and non-internalizing mutant of the FPR is unable to initiate apoptosis, indicating that receptor phosphorylation and internalization, but not solely chronic activation due to a lack of desensitization, are critical determinants for the induction of apoptosis by the FPR. We further demonstrate that this response is not unique to the FPR with numerous additional GPCRs, including the V2 vasopressin, angiotensin II (type 1A), and CXCR2 receptors, capable of initiating apoptosis upon stimulation, whereas GPCRs such as the beta(2)-adrenergic receptor and CXCR4 are not capable of initiating apoptotic signaling. These data demonstrate for the first time that arrestins play a critical and completely unexpected role in the suppression GPCR-mediated apoptosis, which we show is a common consequence of GPCR-mediated cellular activation in the absence of arrestins.  相似文献   

13.
To investigate the coupling selectivity of G proteins and G protein-coupled receptors (GPCRs), we developed a reconstitution system made up of GPCR and heterotrimeric G proteins on extracellular baculovirus particles (budded virus (BV)). BV released from Sf9 cells infected with a recombinant baculovirus coding for human leukotriene B4 receptor (BLT1) cDNA exhibited a high level of BLT1 expression (27.3 pmol/mg of protein) and specific [3H]leukotriene B4 binding activity (Kd = 3.67 nm). The apparent low affinity of the expressed BLT1 is thought to be due to relative non-availability of the Galphai isoform, which couples to BLT1, in BV. Co-infection of heterotrimeric G protein recombinant viruses led to co-expression of BLT1 and G protein subunits on BV. A guanosine-5'-(beta,gamma-imido)triphosphate-sensitive, high affinity ligand binding was observed in the BLT1 BV co-expressing Galphai1beta1gamma2 (Kd = 0.17 nm). A relatively large amount of high affinity receptor protein was recovered in the co-expressing BV fraction (6.81 pmol/mg of protein). A combination of BLT1 and Galphai1 without Gbeta1gamma2 did not exhibit high affinity ligand binding on BV, indicating the low background environment for the GPCR-G protein coupling in this BV reconstitution system. To test other G proteins for coupling, various Galpha subunits were combinatorially expressed in BV with BLT1 and Gbeta1gamma2. The BLT1 BV co-expressing GalphaoAbeta1gamma2 exhibited a comparably high affinity ligand binding as well as ligand-stimulated guanosine 5'-3-O-(thio)triphosphate binding to Galphai1beta1gamma2. Co-expression of other Galpha isoforms such as Galphas, Galpha11, Galpha14, Galpha16, Galpha12, or Galpha13 did not exhibit any significant effects on ligand binding affinity in this system. These results reveal that BLT1 and coupled trimeric G proteins were functionally reconstituted on BV and that Galphao as well as Galphai couples to BLT1. This expression system should prove highly useful for pharmacological characterization, biosensor chip applications, and also drug discovery directed at highly important targets of the membrane receptor proteins.  相似文献   

14.
Arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of signaling cascades for the majority of G protein-coupled receptors (GPCRs). Many GPCRs undergo agonist-mediated internalization through arrestin-dependent mechanisms, wherein arrestin serves as an adapter between the receptor and endocytic proteins. To understand the role of arrestins in N-formyl peptide receptor (FPR) trafficking, we stably expressed the FPR in a mouse embryonic fibroblast cell line (MEF) that lacked endogenous arrestin 2 and arrestin 3 (arrestin-deficient). We compared FPR internalization and recycling kinetics in these cells to congenic wild type MEF cell lines. Internalization of the FPR was not altered in the absence of arrestins. Since the FPR remains associated with arrestins following internalization, we investigated whether the rate of FPR recycling was altered in arrestin-deficient cells. While the FPR was able to recycle in the wild type cells, receptor recycling was largely absent in the arrestin double knockout cells. Reconstitution of the arrestin-deficient line with either arrestin 2 or arrestin 3 restored receptor recycling. Confocal fluorescence microscopy studies demonstrated that in arrestin-deficient cells the FPR may become trapped in the perinuclear recycling compartment. These observations indicate that, although the FPR can internalize in the absence of arrestins, recycling of internalized receptors to the cell surface is prevented. Our results suggest a novel role for arrestins in the post-endocytic trafficking of GPCRs.  相似文献   

15.
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.  相似文献   

16.
In the classical model of G-protein-coupled receptor (GPCR) regulation, arrestins terminate receptor signalling. After receptor activation, arrestins desensitize phosphorylated GPCRs, blocking further activation and initiating receptor internalization. This function of arrestins is exemplified by studies on the role of arrestins in the development of tolerance to, but not dependence on, morphine. Arrestins also link GPCRs to several signalling pathways, including activation of the non-receptor tyrosine kinase SRC and mitogen-activated protein kinase. In these cascades, arrestins function as adaptors and scaffolds, bringing sequentially acting kinases into proximity with each other and the receptor. The signalling roles of arrestins have been expanded even further with the discovery that the formation of stable receptor-arrestin complexes initiates photoreceptor apoptosis in Drosophila, leading to retinal degeneration. Here we review our current understanding of arrestin function, discussing both its classical and newly discovered roles.  相似文献   

17.
The protein product of the ocular albinism type 1 gene, named OA1, is a pigment cell‐specific integral membrane glycoprotein, localized to melanosomes and lysosomes and possibly implicated in melanosome biogenesis. Although its function remains unknown, we previously showed that OA1 shares structural similarities with G protein‐coupled receptors (GPCRs). To ascertain the molecular function of OA1 and in particular its nature as a GPCR, we adopted a heterologous expression strategy commonly exploited to demonstrate GPCR‐mediated signaling in mammalian cells. Here we show that when expressed in COS7 cells OA1 displays a considerable and spontaneous capacity to activate heterotrimeric G proteins and the associated signaling cascade. In contrast, OA1 mutants carrying either a missense mutation or a small deletion in the third cytosolic loop lack this ability. Furthermore, OA1 is phosphorylated and interacts with arrestins, well‐established multifunctional adaptors of conformationally active GPCRs. In fact, OA1 colocalizes and coprecipitates with arrestins, which downregulate the signaling of OA1 by specifically reducing its expression levels. These findings indicate that heterologously expressed OA1 exhibits two fundamental properties of GPCRs, being capable to activate heterotrimeric G proteins and to functionally associate with arrestins, and provide proof of principle that OA1 can actually function as a canonical GPCR in mammalian cells.  相似文献   

18.
Interactions between G proteins and GPCRs are fundamental for transmitting signals for a multitude of physiologic responses. Little is known regarding the protein-protein interface between the G protein and the receptor, much less the mechanisms for receptor activation of G proteins. Here, we will describe how expressed protein ligation will aid in the study of protein-protein interactions between semi-synthetic G alpha subunits and GPCRs.  相似文献   

19.
The G protein-coupled chemokine receptor CXCR4 serves as the primary coreceptor for entry of T-cell tropic human immunodeficiency virus. CXCR4 undergoes tonic internalization as well as internalization in response to stimulation with phorbol esters and ligand (SDF-1alpha). We investigated the trafficking of this receptor, and we attempted to define the residues of CXCR4 that were critical for receptor internalization. In both COS-1 and HEK-293 cells transiently overexpressing CXCR4, SDF-1alpha and phorbol esters (PMA) promoted rapid internalization of cell surface receptors as assessed by both enzyme-linked immunosorbent assay and immunofluorescence analysis. Expression of GRK2 and/or arrestins promoted modest additional CXCR4 internalization in response to both PMA and SDF. Both PMA- and SDF-mediated CXCR4 internalization was inhibited by coexpression of dominant negative mutants of dynamin-1 and arrestin-3. Arrestin was also recruited to the plasma membrane and appeared to colocalize with internalized receptors in response to SDF but not PMA. We then evaluated the ability of CXCR4 receptors containing mutations of serines and threonines, as well as a dileucine motif, within the C-terminal tail to be internalized and phosphorylated in response to either PMA or SDF-1alpha. This analysis showed that multiple residues within the CXCR4 C-terminal tail appear to mediate both PMA- and SDF-1alpha-mediated receptor internalization. The ability of coexpressed GRK2 and arrestins to promote internalization of the CXCR4 mutants revealed distinct differences between respective mutants and suggested that the integrity of the dileucine motif (Ile-328 and Leu-329) and serines 324, 325, 338, and 339 are critical for receptor internalization.  相似文献   

20.
Nicotinic acetylcholine receptors (nAChRs) form ligand-gated ion channels that mediate fast signal transmission at synapses. These receptors are members of a large family of pentameric ion channels that are of active medical interest. An expression system utilizing a chimerical construct of the N-terminal extracellular ligand binding domain of alpha7 type nAChR and the C-terminal transmembrane portion of 5HT3 type receptor resulted high level of expressions. Two ligand affinity chromatography purification methods for this receptor have been developed. One method relies on the covalent immobilization of a high affinity small molecule alpha7 nAChR agonist, (R)-5-(4-aminophenyl)-N-(quinuclidin-3-yl) furan-2-carboxamide, and the other uses mono biotinylated alpha-bungarotoxin, an antagonist, that forms a quasi-irreversible complex with alpha7 nAChR. Detergent solubilized alpha7/5HT(3) chimeric receptors were selectively retained on the affinity resins and could be eluted with free ligand or biotin. The proteins purified by both methods were characterized by gel electrophoresis, mass spectra, amino acid composition analysis, and N-terminal sequence determination. These analyses confirmed the isolation of a mature alpha7/5HT(3) receptor with the signal peptide removed. These results suggest a scalable path forward to generate multi-milligram amounts of purified complexes for additional studies including protein crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号