首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary We have studied the regulation of two cysteine biosynthetic enzymes in S. typhimurium merodiploid strains which are heterozygous at the cysB regulatory locus. This gene codes for an element of positive control which is necessary for the expression of the enzymes of the biosynthetic pathway. Under conditions of sulfur deprivation levels of sulfite reductase (coded for by cysI, cysJ and cysG) and of O-acetylserine sulfhydrylase (coded for by cysK) are derepressed in cysB + haploid strains, but not in cysB - haploid strains. Growth on a rich sulfur source such as l-cystine results in low levels of both enzyme activities in cysB + and cysB - haploid strains but not in cysB c haploid strains, where enzyme expression is constitutive, i.e. substantially greater than in a cysB + strain grown on l-cystine, regardless of the nutrients used for growth.We find that cysB -/F cysB + merodiploid strains can be derepressed for sulfite reductase and O-acetylserine sulfhydrylase by growth on a poor sulfur source, and therefore cysB + is dominant to cysB -. Enzyme levels are also derepressed in l-cystine-grown cysB c/F cysB + strains indicating that cysB c is dominant to cysB +. The cysB484 allele is known to be cysB - in regard to the regulation of sulfite reductase activity, but cysB c with respect to O-acetylserine sulfhydrylase. In a cysB484/F cysB + strain the cysB - character of cysB484 is recessive to cysB +, while cysB c is dominant to cysB +.Merodiploids of the type cysB -/F cysB +, bearing chromosomal point mutations are derepressed by sulfur deprivation to levels which are either less than, equal to, or greater than those of wild type. These results can be explained by assuming a multimeric structure for the cysB protein and the formation in merodiploids of cysB -/cysB + hybrid molecules with altered capacities for gene activation. The dominance of cysB c over cysB + indicates that in contrast to the araC regulatory protein, which acts as both a gene activator and repressor, the cysB protein serves only as an element of positive control.  相似文献   

3.
Summary In a cysB deletion strain a new mutation, denoted cys-2332 was isolated, which causes the constitutive expression of the cysJIH operon. cys-2332 is closely linked to cysJIH and presumably is located in the initiator region of this operon, rendering its expression independent of the cysB gene product and the internal inducer O-acetyl-L-serine. The presence of salfite reductase (encoded by cysI and cysJ) activity in a cysB - cys-2332 double mutant indicates that cysG, which is not linked to cysJIH but is required for the synthesis of the sulfite reductase co-factor siroheme, is not controlled by cysB.  相似文献   

4.
The putative role of phloem amino acids as negative feedback signals for root NO3- uptake was investigated in Ricinus communis L. The NO3--grown plants were subjected to N-deficiency due either to complete N-deprivation, or to localized N-deprivation on one side of a split-root system. In comparison with controls, complete N-deprivation resulted in a transient increase in 15NO3- influx, and in profound changes in downward phloem transport of amino acids. Total amino acid concentration in the phloem sap decreased by 40%, but responses markedly differed between the individual amino acids. Concentrations of Gln and Ser were rapidly lowered by 50%, while those of Val, Phe, Leu, and Ile displayed a marked increase. Localized N-deprivation on one side of the split root system also resulted in the up-regulation of 15NO3- influx in the roots still supplied with NO3-. However, the amino acid composition of the phloem sap directed to these roots was not modified by the treatment, and remained similar to that in N-sufficient control plants. Only amino acid transport to the N-deprived roots was affected as observed in response to complete N-deprivation. The results from split-root plants indicate that the response of root NO3- influx to N-deficiency is controlled by shoot-borne regulatory signals, and provide a case study where these signals are not related to a qualitative change or a significant decrease in downward phloem transport of amino acids.  相似文献   

5.
6.
The chelating agents, ethylene glycol bis-(β-aminoethyl ether)-N,N′-tetraacetic acid (EGTA) and EDTA, had no effect on the initial interaction of phytohemagglutinin with lymphocytes at concentrations which have been shown previously to inhibit the development of the phytohemagglutinin response completely. However, they had a marked inhibitory effect on uptake of the amino acid analog, α-aminoisobutyric acid in both unstimulated and phytohemagglutinin-stimulated cells. The inhibition of amino acid uptake by EGTA could be reversed by adding Ca2+ but not Mg2+. These results demonstrated that Ca2+ is not essential to the initial interaction of phytohemagglutinin with the cell, but does influence amino acid transport which may be a critical preparatory event for later increased protein synthesis.  相似文献   

7.
Summary Mutations in the cysB and cysE genes of Escherichia coli K12 cause an increase in resistance to the gyrase inhibitor novobiocin but not to coumermycin, acriflavine and rifampicin. This unusual relationship was also observed among spontaneous novobiocin resistant (Novr) mutants: 10% of Novr mutants isolated on rich (LA) plates with novobiocin could not grow on minimal plates, and among those approximately half were cysB or cysE mutants. Further analyses demonstrated that cysB and cysE negative alleles neither interfere with transport of novobiocin nor affect DNA supercoiling.  相似文献   

8.
Summary The sacU h , amyB and pap mutations are identical with respect to their pleiotropic phenotype and their genetic location. Strains bearing these mutations overproduce several exocellular enzymes: -amylase, lavansucrase and proteases, they are poorly or not at all transformable and most of them are devoid of flagella. These mutations are tightly linked to the sacU - mutations by transformation and therefore lie between the hisA1 and gtaB290 markers. It is possible that the sacU h , amyB and pap mutations on one hand and the sacU - mutations on the other are two different classes of alterations of the same regulatory gene controlling the synthesis of some exocellular enzymes and several other cellular functions. Furthermore an amy - mutation, leading to the lack of -amylase activity, was mapped between the lin2 and aroI906 markers which are not linked to the sacU locus.  相似文献   

9.
The uptake and metabolism of α-[5-14C]ketoglutarate by phosphorus-deficient and full nutrient (control) lemon (Citrus limon) leaves were studied over various time intervals. After 45 minutes in P-deficient leaves, the bulk of incorporated 14C appeared in organic acids and much less in amino acids, while in the control leaves, the 14C contents of organic and amino acids were equal. In P-deficient leaves, after longer incubation times the 14C content of organic acids and amino acids increased, while that of CO2 and residue fractions remained low. In full nutrient leaves the 14C content of amino acids and organic acids decreased after longer incubation time and increased in the insoluble residue and CO2. In full nutrient leaves the organic and amino acid metabolism were closely related and accompanied by protein synthesis and CO2 release, while in P-deficient leaves an accelerating accumulation of arginine and citric acid was linked together with inhibition of protein synthesis and CO2 liberation.  相似文献   

10.
The effects of short deletions of the C terminus of the BvgA response regulator protein of the BvgAS two-component system were examined in Bordetella pertussis. When present as a single copy in the chromosome, deletions removing as few as two amino acids conferred a completely Bvg phenotype. When provided in trans, on the broad-host-range plasmid pRK290, under the control of the native bvgAS promoter, deletions of two or three amino acids conferred a profound growth inhibition which was dependent on the integrity and activity of the wild-type chromosomal bvgAS locus. It is proposed that this phenotype was the result of an inappropriate interaction of the mutant BvgA protein with the RNA polymerase enzyme, specifically the α subunit. Mutant strains in which this growth inhibition was relieved were isolated and characterized. Although most of the suppressor mutations affected either the mutant plasmid copy or the wild-type chromosomal bvg locus, three mutations which affected the α subunit of B. pertussis RNA polymerase were also isolated. Two of these resulted in increased levels of the α subunit, and one caused a substitution of glycine for the aspartic acid residue at position 171, in the N-terminal domain. All three mutations also resulted in a differential phenotype in that expression of fha was essentially normal, but expression of ptx was greatly reduced.  相似文献   

11.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

12.
13.
Abstract— With the single rat brain cortical slice serving as an in vitro bio-assay system, the effects of neurotransmitter amino acids (1 mm ) on brain swelling, water, sodium and potassium content, inulin space, and lactate production were studied. The putative dicarboxylic amino acid neurotransmitters, l -glutamic acid and l -aspartic acids, greatly increased intracellular brain swelling with increased intracellular Na+, water content and lactate production, and decreased inulin space and intracellular K+. Equimolar GABA, taurine, glycine, the putative inhibitory neurotransmitter amino acids, and equimolar α-amino-isobutyric acid had no effect. Brain swelling and intracellular Na+/K+ ratios were greatly increased by l -glutamate and l -aspartate at a concentration of 10 mm . However, l -aspartate at these concentrations greatly depleted the K+ content and lactate production as compared to l -glutamate. Further studies indicated that only the structural analogs and isomers of the dicarboxylic amino acids possessing two acidic groups and an α-amino group had a similar effect on the induction of brain swelling. Among the analogs of glutamic acid, dl -homocysteic acid and kainic acid had a greater effect on brain swelling, as observed from the total adenosine 5′-triphosphate (ATP) levels and the time-course and dose-response. A biphasic response in lactate production was induced by dl -homocysteic acid and kainic acid, suggesting that these analogs had a neurotoxic effect on cellular metabolism at higher concentrations.  相似文献   

14.
—(1) The effects of aminooxyacetic acid, ouabain and Ca2+ on the compartmentation of amino acid metabolism have been studied in slices of brain incubated with sodium-[1-14C]acetate, l-[U-14C]glutamate and l-[U-14C]aspartate as tracer metabolites. (2) Aminooxyacetic acid (10-3 m) inhibited the labelling of aspartate from [14C]acetate and [14C]glutamate, as well as the incorporation of label from [14C]aspartate into glutamate and glutamine. It also inhibited the labelling of GABA from all three radioactive precursors, as would be anticipated if there was inhibition of several transaminases as well as glutamate decarboxylase. The RSA of glutamine labelled from [1-14C]acetate was increased. This finding indicated that the glutamate pool which is utilized for glutamine formation is associated with glutamate dehydrogenase, and this enzyme appears to be related to the ‘synthetic tricarboxylic acid cycle’. AOAA exerted its major inhibitory effects on the citric acid‘energy cycle’with which transaminases are associated. (3) Ouabain (10-5 m) inhibited the labelling of glutamine to a much greater extent than the labelling of glutamate from [1-14C]acetate. It also caused leakage of amino acids from the tissue into the medium. Its effect on the glutamate–glutamine system was interpreted to be a selective inhibition of the 'synthetic’citric acid cycle. (4) The omission of Ca2+ from the incubation medium was associated with formation of glutamine with RSA less than 1·0 when labelled from [U-14C]glutamate, [U-14C]aspartate and lower than normal when labelled from [1-14C]acetate.  相似文献   

15.
Protocorms of Cymbidium (Orchidaceae) were grown on media containing different organic nutrients. Of the sugars tested sucrose was better than maltose, glucose and fructose, and sucrose had an optimum concentration of 3 to 4 %. D-Mannose was significantly less effective than the other sugars. The amino acid mixtures casamino acids (casein hydrolysate) and tryptone increased growth while yeast extract was inhibitory and malt extract without effect. Optimal concentrations were 2 to 3 g · l-1 casamino acids and 3 to 4 g · l-1 tryptone. It was to some extent possible to substitute the amino acid mixtures with a single amino acid (glutamine at 300 mg · l-1). Arginine was inhibitory and asparagine was without any effect. Vitamins proved to be unnecessary although there was a tendency towards increased growth with nicotinic acid and meso-inositol. Purines and pyrimidines were added to the medium but with no effect. Liquid endosperm from coconuts (10 to 15%) increased growth while the liquid endosperm from Aesculus hippocastanum was inhibitory. On the basis of these results a revised medium is proposed for the in vitro propagation of Cymbidium.  相似文献   

16.
17.
18.
A number of amino acid derivatives of DL-Zra/w-epoxysuccinic acid, with a general formula of R1O-ES-AA-OR2 (ES, DL-trans-epoxysuccinyl group; AA, amino acid residue) were newly synthesized and used for the study of structure-activity relationships of papain inhibition. Branched-alkyl amino acids, such as Leu, He and Val, as AA and hydrogen or an alkyl group substituted with a phenyl or cycloalkyl group as R1 were desirable for activity, respectively. However, R2 or the optical activities of ES and AA not so much influenced on the activity.  相似文献   

19.
Respiratory CO2 and O2 flux were measured in hydroponically grown Lycopersicon esculentum (L.) Mill. cv. F144 plants at either low (O mol mol-1) or elevated CO2 concentrations (>2000 mol mol-1) supplied to the roots. In NO3- fed plants the consumption of O2 and the engagement of the alternative pathway were increased by elevated dissolved inorganic carbon (DIC = CO2 + HCO3-) concentrations. This was ascribed to the influence of organic acids on the TCA cycle and electron transport pathways. Inhibition of O2 consumption by elevated DIC in NH4--fed plants may be due to the reduction requirements of anaplerotic carbon entering the TCA cycle or the removal of carbon from the TCA cycle for amino acid synthesis. In both NO3- and NH4+-fed plants elevated DIC inhibited CO2 release due to high rates of DIC incorporation by phosphoenolpyruvate carboxylase (PEPc) activity. Transient net CO2 consumption due to the inhibition of respiration by salicylhydroxamic acid and KCN, together with high respiratory quotients after the addition of inhibitors of carbonic anhydrase (CA) activity, were also ascribed to high rates of DIC incorporation at elevated DIC concentrations. Ethoxyzolamide, an inhibitor of CA activity, inhibited both DI14C incorporation into organic products and NO3- uptake by 81% and 40%, respectively. This, together with a 32% increase in DI14C accumulation and inhibition of NO3- uptake upon inhibition of anion transport by diisothiocyanato-stilbene-2,2'-disulphonic acid (DIDS) may indicate the exchange of HCO3- for NO3- across the root plasmalemma. It was concluded that dark incorporation of HCO3- by PEPc increased at elevated rhizosphere DIC concentrations and that the products of DIC incorporation may stimulate respiratory electron transport. Additional reducing energy and carbon skeletons from the tricarboxylic acid (TCA) cycle would therefore be available for respiration and the reduction and incorporation of NO3- into amino acids.Key words: Tomato, PEPc, respiration, carbon dioxide nitrate.   相似文献   

20.
Protein, nucleic acids, and nucleotide syntheses were studied in pea aphids, Acyrthosiphon pisum (Harris), by feeding them labeled 14C-amino acids and [5-3H]-orotic acid in sucrose. It was demonstrated that in the absence of dietary essential amino acids, aphids were capable of synthesizing nucleic acids, nucleotides, and proteins when provided with a single dietary amino acid in sucrose. It is suggested that other required amino acids were possibly supplied by the symbionts present in the pea aphid and/or were obtained from the amino acid pool in the hemolymph or glucose, one of the end products of sucrose digestion. Of the various amino acids tested, synthesis of measurable amounts of protein or other compounds occurred when alanine, aspartic acid, glutamic acid, glycine, proline, or serine were provided, but no synthesis occurred with cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号