首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of RNA and synthetic polynucleotides degradation by intracellular RNAses Pc1 and Pc2 of the fungus Penicillium claviforme were studied. It was shown that the enzymes possess the endonuclease activity and are not specific for the bases vicinal to the cleaved PDE bonds (EC 3.1.4.23). The increase of binding of the dinucleoside monophosphates by Pc1 and Pc2 dependent on the nucleoside at the 3'-end of the PDE bond is: A greater than C greater than G greater than U. This order is opposite for the rates of these substrates cleavage by the RNAses. A homologous specificity of the intracellular RNAse Pc1 and the extracellular RNAse II of Pen. claviforme has been revealed.  相似文献   

2.
Some physico-chemical properties, specificity and the character of action of rat liver nuclear ribonuclease are studied. The enzyme maximal activity was observed at pH 7.5--8.0, ionic strength 0.02--0.3, Mg2+ being necessary. Nuclease is an oligomer, having molecular weight is 160000--180000 daltons and containing separate associates. Purified enzyme is free of contaminating activities (polynucleotidephosphorylase, DNAse; 5'-nucleotidase, and alkaline phosphatases). It is shown to hydrolyse polyA and RNA for endonuclease type, degradation products being oligonucleotides terminating with 5'-phosphate and 3'-hydroxyl groups. RNAse hydrolyses all phosphodiester bonds in polynucleotides, developing no specificity to the nature of bases. Relative hydrolysis rate for different substrates decreased as follows: polyA greater than yeast RNA greater than polyC greater than polyU greater than 28S rRNA greater than greater than 18S rRNA greater than polyA-polyU. The enzyme may be classified as ribonucleate-5'-nucleotidehydrolase (EC 3.1.4.9.).  相似文献   

3.
4.
Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the double-stranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA, Rnt1p specifically cleaves RNAs that possess short irregular stem-loops containing 12–14 base pairs interrupted by internal loops and bulges and capped by conserved AGNN tetraloops. Consistent with this substrate specificity, the isolated Rnt1p dsRBD and the 30–40 amino acids that follow bind to AGNN-containing stem-loops preferentially in vitro. In order to understand how Rnt1p recognizes its cognate processing sites, we have defined its minimal RNA-binding domain and determined its structure by solution NMR spectroscopy and X-ray crystallography. We observe a new carboxy-terminal helix following a canonical dsRBD structure. Removal of this helix reduces binding to Rnt1p substrates. The results suggest that this helix allows the Rnt1p dsRBD to bind to short RNA stem-loops by modulating the conformation of helix α1, a key RNA-recognition element of the dsRBD.  相似文献   

5.
The effect of Bacillus intermedius RNAse on the reproduction of Candida tropicalis and synthesis of the main biopolymers in the yeast cells. It has been found that stimulating action of the enzyme appears at the concentration of 10(-5)-10(-6) mg/ml and does not depend on the physiological state of the sowing culture. The connection between the increase of the ionic penetration and stimulation of the RNA and proteins synthesis in the yeast cells subjected to the RNAse action is shown. The mechanism of chromatine-associated RNA-polymerase activation is suggested to include the alteration of the ionic penetration of cells under the RNAse action.  相似文献   

6.
The Tetrahymena ribozyme has been shown to catalyze an RNA polymerase-like reaction in which an RNA primer is extended by the sequential addition of pN nucleotides derived from GpN dinucleotides, where N = A, C, or U. Here, we show that this reaction is influenced by the presence of a template; bases that can form Watson-Crick base pairs with a template add as much as 25-fold more efficiently than mismatched bases. A mutant enzyme with an altered guanosine binding site can catalyze template-directed primer extension with all four bases when supplied with dinucleotides of the form 2-aminopurine-pN.  相似文献   

7.
The structural requirements for DNA/RNA hybrids to be suitable substrates for RNase H1 are well described; however the tolerance level of this enzyme towards modifications that do not alter the duplex conformation is not clearly understood, especially with respect to the sense RNA strand. In order to investigate the molecular requirements of Escherichia coli RNase H1 (termed RNase H1 here) with respect to the sense RNA strand, we synthesized a series of oligonucleotides containing 2'-deoxy-2'-fluoro-beta-D-ribose (2'F-RNA) as a substitute for the natural beta-D-ribose sugars found in RNA. Our results from a series of RNase H1 binding and cleavage studies indicated that 2'F-RNA/DNA hybrids are not substrates of RNase H1 and ultimately led to the conclusion that the 2'-hydroxyl moiety of the RNA strand in a DNA/RNA hybrid is required for both binding and hydrolysis by RNase H1. Through the synthesis of a series of chimeric sense oligonucleotides of mixed RNA and 2'F-RNA composition, the gap requirements of RNase H1 within the sense strand were examined. Results from these studies showed that RNase H1 requires at least five or six natural RNA residues within the sense RNA strand of a hybrid substrate for both binding and hydrolysis. The RNase H1-mediated degradation patterns of these hybrids agree with previous suggestions on the processivity of RNase H1, mainly that the binding site is located 5' to the catalytic site with respect to the sense strand. They also suggest, however, that the binding and catalytic domains of RNase H1 might be closer than has been previously suggested. In addition to the above, physicochemical studies have revealed the thermal stabilities and relative conformations of these modified heteroduplexes under physiological conditions. These findings offer further insights into the physical binding and catalytic properties of the RNase H1-substrate interaction, and have been incorporated into a general model summarizing the mechanism of action of this unique enzyme.  相似文献   

8.
Specific RNA recognition of proteins containing the double-strand RNA-binding domain (dsRBD) is essential for several biological pathways such as ADAR-mediated adenosine deamination, localization of RNAs by Staufen, or RNA cleavage by RNAse III. Structural analysis has demonstrated the lack of base-specific interactions of dsRBDs with either a perfect RNA duplex or an RNA hairpin. We therefore asked whether in vitro selections performed in parallel with individual dsRBDs could yield RNAs that are specifically recognized by the dsRBD on which they were selected . To this end, SELEX experiments were performed using either the second dsRBD of the RNA-editing enzyme ADAR1 or the second dsRBD of Xlrbpa, a homolog of TRBP that is involved in RISC formation. Several RNA families with high binding capacities for dsRBDs were isolated from either SELEX experiment, but no discrimination of these RNAs by different dsRBDs could be detected. The selected RNAs are highly structured, and binding regions map to two neighboring stem-loops that presumably form stacked helices and are interrupted by mismatches and bulges. Despite the lack of selective binding of SELEX RNAs to individual dsRBDS, selected RNAs can efficiently interfere with RNA editing in vivo.  相似文献   

9.
Treatment of calf serum at 60 degrees C and pH 3.5 followed by chromatography on carboxymethyl (CM) cellulose resulted in the separation of two major peaks of alkaline RNAse activity. One was eluted from CM-cellulose at 0.075 M KCl with an overall purification of 5400-fold and the other was eluted at 0.25 M KCl with a 6700-fold purification. The RNAse eluted from CM-cellulose at 0.075 M KCl was almost completely inhibited by anti-RNAse A serum and by the endogenous RNAse inhibitor and a 33% inhibition was observed in the presence of 5 mM MgCl2. This enzyme seems to be similar or identical to RNAse A. The other RNAse, eluted from CM-cellulose at 0.25 M KCl was not inhibited by anti-RNAse A or 5 mM MgCl2 and was much less sensitive to the endogenous inhibitor. Both enzymes degraded RNA endonucleolytically and the nucleoside monophosphates obtained after partial hydrolysis of RNA by the two serum RNAases were primarily 2'- or 3' -CMP and 2'- or 3' -UMP. Poly(A), native DNA and denatured DNA were degraded slowly or not at all. The RNAase A-like enzyme degraded poly(C) at a significantly faster rate, and poly(U) at a slower rate, than RNA. However, the other serum RNAase was more active with poly(U) than with RNA and almost inactive with poly(C) as the substrate.  相似文献   

10.
Studies were conducted on the depolymerization of polyadenylic acid (poly (A)) by RNAse A (EC 3.1.4.22) depending on the pH (pH 5-8). The results showed that depending on the pH, the ratio Vmax/Km was analogous to that described earlier for nucleoside-2', 3'-cyclophosphates and dinucleoside phosphates. This indicates that depolymerization of poly (A), transesterification and hydrolysis of specific substrates is achieved by the same ionizing groups of the enzyme with pKa 5.4 and pKb 6.4. The rate of degradation of poly (A) is also influenced by the state of adenine ionization, the protonation of which leads to the formation of a double helical poly (A), and does not serve as a substrate for RNAse A. The low rate for the depolymerization of poly (A) in the presence of RNAse A is related to a decrease in the turnover number of the enzyme, and an increase in the molecular weight of the enzyme (RNAse dimer), leads to a decrease in the Km, and does not effect Vmax. This indicates that the rate of depolymerization of polynucleotides is determined by orientation of factors. On the basis of the comparison of the resultant kinetic data, and the structure of the enzyme inhibitory complexes of RNAse S, which were studied by the method of x-ray structural analysis, a conclusion was reached on the kinetic characteristics of RNAse A specificity with respect to polymeric substrates, which is determined by the orinetation of the ribose phosphate relative to the catalytic groups of the active site.  相似文献   

11.
A new procedure for isolation of homogenous ribonuclease of Bac. intermedius from a commercial source is described. The yields of 140 mg of RNAse from 200 g of the enzymic powder were attained. The amino acid composition of the enzyme was determined. The RNAse contains neither the sulfhydryl groups nor the disulfide bonds and has only one histidine residue. At the same time the amount of aromatic amino acid residues is relatively high. The enzyme is highly resistant to heat and acid treatment but is less stable in an alkaline solution. The pH optimum of the RNAse for the RNA digestion is 8,5; the temperature optimum for this reaction is 37 degrees. A spectrophotometric method for the RNAse activity assay using polyA as a specific substrate was developed. The purified product provides a suitable starting material for structural studies.  相似文献   

12.
Despite recent developments in analyzing RNA secondary structures, relatively few RNA structures have been determined. To date, many investigators have relied on the traditional method of using structure-specific RNAse enzymes to probe RNA secondary structures. However, if these data were combined with novel computational approaches, investigators would have an informative and valuable tool for RNA structural analysis. To this end, we created the web server “RNAdigest.” RNAdigest uses mfold RNA structural models in order to predict the results of RNAse digestion experiments. Furthermore, RNAdigest also utilizes both RNA sequence and the experimental digestion patterns to formulate the constraints for predicting secondary structures of the RNA. Thus, RNAdigest allows for the structural interpretation of RNAse digestion experiments. Overall, RNAdigest simplifies RNAse digestion result analyses while allowing for the identification of unique fragments. These unique fragments can then be used for testing predicted mfold structures and for designing structural-specific DNA/RNA probes.  相似文献   

13.
Properties of a purified rat-liver nuclease   总被引:2,自引:0,他引:2       下载免费PDF全文
1. The pH optimum, ionic requirement and heat-stability of a purified liver nuclease have been examined with RNA and denatured DNA as substrates. 2. The enzyme attacked DNA and RNA in an endonucleolytic manner, forming oligonucleotides terminated by 5′-phosphate groups. No clear specificity was found with respect to the bases at the site of cleavage. 3. Comparison of the results obtained with RNA and denatured DNA as substrates suggests that the ribonuclease and deoxyribonuclease activities are associated with the same protein.  相似文献   

14.
In a search for eucaryotic enzymes which might process the heterogenous nuclear RNA (HnRNA) from animal cells into messenger RNA, a ribonuclease called RNAse D analogous to E. coli RNAse III in its ability to cleave specifically synthetic or viral double-stranded polyribonucleotides has been detected and extensively purified from the cytosol of Krebs II mouse ascites cells. The purification procedure involved cellular fractionation followed by DEAE-and CM-cellulose chromatography and resulted in an RNAas D preparation contaminated with trace amounts of single-strand specific RNAse (equivalent to less than 0.3 ng per ml) as assayed against poly (rC). Significant levels of RNAse H activity against poly (rA)-poly (dT) were still present in these preparations.  相似文献   

15.
RNA interference is a mechanism of posttranslational (at the level of mRNA) gene silencing. Sequence-specific mRNA degradation is realized with the help of small interfering RNAs produced by processing of a precursor using Dicer, an enzyme from the RNAse III family. This mechanism is now widely used in vitro on cultures of mammalian cells in order to elucidate functions of individual genes by gene specific knockdown. Analogs of small interference RNAs are intensely expressed during embryogenesis. The mechanism of RNA interference plays an especially important role in embryogenesis of invertebrates. Identification of the functions of small noncoding RNAs is essential for understanding the genetic mechanisms underlying individual developmental stages. In order to integrate small interference RNAs in mammalian cells, various systems have been developed that allow both transient (for 48 h) and stable expression in vitro. These systems are considered in the present review.  相似文献   

16.
RNA interference is a mechanism of posttranslational (at the level of mRNA) gene silencing. Sequence-specific mRNA degradation is realized with the help of small interfering RNAs produced by processing of a precursor using Dicer, an enzyme from the RNAse III family. This mechanism is now widely used in vitro on cultures of mammalian cells in order to elucidate functions of individual genes by gene specific knockdown. Analogs of small interference RNAs are intensely expressed during embryogenesis. The mechanism of RNA interference plays an especially important role in embryogenesis of invertebrates. Identification of the functions of small noncoding RNAs is essential for understanding the genetic mechanisms underlying individual developmental stages. In order to integrate small interference RNAs in mammalian cells, various systems have been developed that allow both transient (for 48 h) and stable expression in vitro. These systems are considered in the present review.  相似文献   

17.
Hydrophobic effects on binding of ribonuclease T1 to guanine bases of several ribonucleotides have been proved by mutating a hydrophobic residue at the recognition site and by measuring the effect on binding. Mutation of a hydrophobic surface residue to a more hydrophobic residue (Tyr45----Trp) enhances the binding to ribonucleotides, including mononucleotide inhibitor and product, and a synthetic substrate-analog trinucleotide as well as the binding to dinucleotide substrates and RNA. Enhancements on binding to non-substrate ribonucleotides by the mutation have been observed with free energy changes ranging from -2.2 to -3.9 kJ/mol. These changes are in good agreement with that of substrate binding, -2.3 kJ/mol, which is calculated from Michaelis constants obtained from kinetic studies. It is shown, by comparing the observed and calculated changes in binding free energy with differences in the observed transfer free energy changes of the amino acid side chains from organic solvents to water, that the enhancement observed on guanine binding comes from the difference in the hydrophobic effects of the side chains of tyrosine and tryptophan. Furthermore, a linear relationship between nucleolytic activities and hydrophobicity of the residues (Ala, Phe, Tyr, Trp) at position 45 is observed. The mutation could not change substantially the base specificity of RNase T1, which exhibits a prime requirement for guanine bases of substrates.  相似文献   

18.
The effect of polyadenylic acid, a potent inhibitor of mammalian and bacterial RNAses, on the binding of human liver RNAse to its antibody was studied. To do this, a human liver RNAse antibody was immobilized on Sepharose 4B. Examination of the ability of the enzyme to bind to the immobilized anti-RNAse in the presence or absence of polyadenylic acid indicated that enzyme-antibody binding was more sensitive to the presence of polyadenylic acid than was enzyme activity. Furthermore, the effect of polyadenylic acid on enzyme-antibody binding was specific since neither polycytidylic acid nor polyuridylic acid had much effect on the antigenicity of the enzyme. The metal cation, Mg2+, and the polyamine, spermidine, but not putrescine, readily reversed the effects of polyadenylic acid on enzyme-antibody binding.  相似文献   

19.
Our understanding of RNA interference has been enhanced by new data concerning RNase III molecules. The role of Dicer has previously been established in RNAi as the originator of 22-mers characteristic of silencing phenomena. Recently, a related RNAse III enzyme, Drosha, has surfaced as another component of the RNAi pathway. In addition to biochemistry, protein structures have proven to be helpful in deciphering the enzymology of RNase III molecules.  相似文献   

20.
The extracellular ribonuclease (RNAse Bp) was isolated from the cultural medium filtrate of Bacillus pumilus by ammonium sulfate precipitation and two stages of ion-exchange chromatography on carboxymethyl- and phospho-cellulose columns. The amino acid composition and N-terminal amino acid residue have been determined. The kinetic parameters of cleavage reaction of synthetic polynucleotides have been measured. According to their structural homology RNAse Bp has been shown to be similar to RNAses Ba and Bi. Catalytic properties of the enzyme are very close to RNAse Bi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号