首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estradiol (E2) priming (1 nM for 48 h) of normal murine mammary gland epithelial cells significantly increased the response of those cells to epidermal growth factor (EGF)-induced DNA synthesis. The synergism between E2 and EGF was evident in two aspects: After serum-free synchronization for 24 h, more cells entered the S-phase of the cell cycle after E2 priming and when treated with 0.17 nM EGF (13%) than did control cells (1.3%) or cells treated with EGF (4%) or E2 (3.5%) alone; further, the dose of EGF required to elicit maximal response was reduced an order of magnitude in estrogen-primed cells (0.17 nM) compared to controls (1.7 mM). Estrogen alone, however, did not increase DNA synthesis in these cells. Ligand binding studies indicate that these effects of estrogen on proliferating mammary epithelial cells may be explained, at least in part, by a 3.7-fold increase in the number of high affinity EGF-receptors observed in estrogen primed cells (7,300 receptors per cell) compared to estrogen deprived cells (1,960 receptors/cell). © 1993 Wiley-Liss, Inc.  相似文献   

2.
Reactive oxygen species (ROS) contribute to chronic airway inflammation, and NADPH oxidase (Nox) is an important source of ROS. However, little is known of the role that ROS play in chronic upper respiratory tract inflammation. We investigated the mechanism of ROS generation and its association with mucin gene overexpression in the nasal epithelium. The level of platelet-derived growth factor (PDGF) expression was increased in sinusitis mucosa, and high-level PDGF expression induced intracellular ROS, followed by MUC8 gene overexpression in normal human nasal epithelial cells. Knockdown of Nox4 expression with Nox4 siRNA decreased PDGF-induced intracellular ROS and MUC8 expression. Infection with an adenovirus containing Nox4 cDNA resulted in Nox4 overexpression and increased intracellular levels of ROS and MUC8 expression. PDGF and Nox4 overexpression are essential components of intracellular ROS generation and may contribute to chronic inflammation in the nasal epithelium through induction of MUC8 overexpression.  相似文献   

3.
We identified human TRPC3 protein by yeast two-hybrid screening of a human brain cDNA library with human TRPM4b as a bait. Immunoprecipitation and confocal microscopic analyses confirmed the protein-protein interaction between TRPM4b and TRPC3, and these two TRPs were found to be highly colocalized at the plasma membrane of HEK293T cells. Overexpression of TRPM4b suppressed TRPC3-mediated whole cell currents by more than 90% compared to those in TRPC3-expressed HEK293T cells. Furthermore, HEK293T cells stably overexpressing red fluorescent protein (RFP)-TRPM4b exhibited an almost complete abolition of UTP-induced store-operated Ca2+ entry, which is known to take place via endogenous TRPC channels in HEK293T cells. This study is believed to provide the first clear evidence that TRPM4b interacts physically with TRPC3, a member of a different TRP subfamily, and regulates negatively the channel activity, in turn suppressing store-operated Ca2+ entry through the TRPC3 channel.  相似文献   

4.
5.
The purpose of this study was to determine the effect of hypoxia on caspase-8 and -9 gene and protein expression and activity in corneal epithelium. Non-transformed human corneal epithelial cells (HCEC) were cultured in 2% oxygen. A cDNA expression array coupled with densitometric analysis was used to compare relative mRNA expression levels of 96 apoptosis-related genes in hypoxic and normoxic HCEC. Caspase-8, caspase-9, FLIP, Fas, FasL, and TNF protein expression was assessed further using Western blot analysis and ELISA. Caspase-8 and -9 activities were measured using a fluorometric activity assay. Hypoxia did not affect caspase-8 or -9 gene or protein expression in HCEC, however caspase-9 activity was significantly increased. Hypoxia significantly suppressed the activity of caspase-8. FLIP and Fas gene and protein expression were not significantly altered in hypoxic cells compared to normoxic controls. mRNA and protein levels of TNF and TNFR-1 were significantly decreased, while FasL mRNA and proteins levels were significantly increased in hypoxic HCEC. In corneal epithelium stressed by hypoxia caspase-9 activity is upregulated, suggesting that apoptosis proceeds via the mitochondrial pathway. Caspase-8 activity may be suppressed because the loss of TNF and TNFR-1 gene and protein expression inhibits the initial formation of a death signaling complex.  相似文献   

6.
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) results from Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through Ca(2+)-permeable ion channels and is crucial for initiating intestinal epithelial restitution to reseal superficial wounds after mucosal injury. Capacitative Ca(2+) entry (CCE) induced by Ca(2+) store depletion represents a major Ca(2+) influx mechanism, but the exact molecular components constituting this process remain elusive. This study determined whether canonical transient receptor potential (TRPC)1 served as a candidate protein for Ca(2+)-permeable channels mediating CCE in intestinal epithelial cells and played an important role in early epithelial restitution. Normal intestinal epithelial cells (the IEC-6 cell line) expressed TRPC1 and TPRC5 and displayed typical records of whole cell store-operated Ca(2+) currents and CCE generated by Ca(2+) influx after depletion of intracellular stores. Induced TRPC1 expression by stable transfection with the TRPC1 gene increased CCE and enhanced cell migration during restitution. Differentiated IEC-Cdx2L1 cells induced by forced expression of the Cdx2 gene highly expressed endogenous TRPC1 and TRPC5 and exhibited increased CCE and cell migration. Inhibition of TRPC1 expression by small interfering RNA specially targeting TRPC1 not only reduced CCE but also inhibited cell migration after wounding. These findings strongly suggest that TRPC1 functions as store-operated Ca(2+) channels and plays a critical role in intestinal epithelial restitution by regulating CCE and intracellular [Ca(2+)](cyt).  相似文献   

7.
TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells   总被引:1,自引:0,他引:1  
Studies were performed to identify the molecular component responsible for store-operated Ca2+ entry in murine mesangial cells (MMC). Because the canonical transient receptor potential (TRPC) family of proteins was previously shown to comprise Ca2+-selective and -nonselective cation channels in a variety of cells, we screened TRPC1–TRPC7 with the use of molecular methods and the fura 2 method to determine their participation as components of the mesangial store-operated Ca2+ (SOC) channel. Using TRPC-specific primers and RT-PCR, we found that cultured MMC contained mRNA for TRPC1 and TRPC4 but not for TRPC2, TRPC3, TRPC5, TRPC6, and TRPC7. Immunocytochemical staining of MMC revealed predominantly cytoplasmic expression of TRPC1 and plasmalemmal expression of TRPC4. The role of TRPC4 in SOC was determined with TRPC4 antisense and fura 2 ratiometric measurements of intracellular Ca2+ concentration ([Ca2+]i). SOC was measured as the increase in [Ca2+]i after extracellular Ca2+ was increased from <10 nM to 1 mM in the continued presence of thapsigargin. We found that TRPC4 antisense, which reduced plasmalemmal expression of TRPC4, inhibited SOC by 83%. Incubation with scrambled TRPC4 oligonucleotides did not affect SOC. Immunohistochemical staining identified expressed TRPC4 in the glomeruli of mouse renal sections. The results of RT-PCR performed to distinguish between TRPC4- and TRPC4- were consistent with expression of both isoforms in brain but with only TRPC4- expression in MMC. These studies show that TRPC4- may form the homotetrameric SOC in mouse mesangial cells. canonical transient receptor potential; TRPC4-; TRPC4-; TRPC1; fura 2; glomerulus  相似文献   

8.
Human primary keratinocytes are an elegant model system to study the balance between proliferation and differentiation. Both epidermal growth factor (EGF) and extracellular calcium have been implicated to function in the control of this balance, although the molecular mechanism underlying this process is poorly understood. In this study, we measured the effect of both EGF and calcium treatment on activation of p21ras and ERK2. We found that addition of EGF stimulated the activity of ERK2. This stimulation was dependent on p21ras activity, since it was completely abolished by expression of a dominant negative mutant of p21ras (p21ras(Asn-17)). Raising the level of extracellular calcium (1.8 mM) did not result in activation of ERK2. On the contrary, calcium treatment inhibited EGF-induced stimulation of ERK2 activity. In order to determine the site at which calcium treatment interferes in EGF-induced signaling, we analyzed the effect of calcium on the various steps that are involved in EGF-induced, p21ras-dependent activation of ERK2. We observed that calcium treatment inhibited EGF-induced p21ras activation. Calcium treatment, however, did not interfere with EGF-induced EGF receptor autophosphorylation or association of mammalian SOS with the EGF receptor and Shc. This, together with the observation that calcium treatment alone decreased the basal level of p21ras activity, indicates that calcium treatment interferes in EGF-mediated signaling at the level of p21ras. This type of cross talk may play a role in the decision between proliferation and differentiation in human primary keratinocytes.  相似文献   

9.
Platelet-activating factor (PAF) is a phospholipid inter- and intracellular mediator implicated in intestinal injury primarily via induction of an inflammatory cascade. We find that PAF also has direct pathological effects on intestinal epithelial cells (IEC). PAF induces Cl(-) channel activation, which is associated with intracellular acidosis and apoptosis. Using the rat small IEC line IEC-6, electrophysiological experiments demonstrated that PAF induces Cl(-) channel activation. This PAF-activated Cl(-) current was inhibited by Ca(2+) chelation and a calcium calmodulin kinase II inhibitor, suggesting PAF activation of a Ca(2+)-activated Cl(-) channel. To determine the pathological consequences of Cl(-) channel activation, microfluorimetry experiments were performed, which revealed PAF-induced intracellular acidosis, which is also inhibited by the Cl(-) channel inhibitor 4,4'diisothiocyanostilbene-2,2'disulfonic acid and Ca(2+) chelation. PAF-induced intracellular acidosis is associated with caspase 3 activation and DNA fragmentation. PAF-induced caspase activation was abolished in cells transfected with a pH compensatory Na/H exchanger construct to enhance H(+) extruding ability and prevent intracellular acidosis. As ClC-3 is a known intestinal Cl(-) channel dependent on both Ca(2+) and calcium calmodulin kinase II phosphorylation, we generated ClC-3 knockdown cells using short hairpin RNA. PAF induced Cl(-) current; acidosis and apoptosis were all significantly decreased in ClC-3 knockdown cells. Our data suggest a novel mechanism of PAF-induced injury by which PAF induces intracellular acidosis via activation of the Ca(2+)-dependent Cl(-) channel ClC-3, resulting in apoptosis of IEC.  相似文献   

10.
The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or 'gates'. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1-TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.  相似文献   

11.
The effect of thalidomide on epidermal growth factor (EGF)-induced cell growth was examined. Thalidomide inhibited EGF-induced cell growth in mouse and human monocytic leukemia cells, RAW 264.7, U937 and THP-1. Thalidomide inhibited EGF-induced phosphorylation of extracellular signal regulated kinase (ERK) 1/2, but not p38 and stress-activated protein kinase (SAPK)/JNK. The phosphorylation of MEK1/2 and Raf at Ser 338 as the upstream molecules of ERK 1/2 was also prevented by thalidomide. Further, it inhibited EGF-induced Ras activation through preventing the transition to GTP-bound active Ras. Thalidomide inhibited the Ras activation induced by lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF) as well as EGF. There was no significant difference in the expression and function of EGF receptor between thalidomide-treated and non-treated cells. Therefore, thalidomide was suggested to inhibit EGF-induced cell growth via inactivation of Ras.  相似文献   

12.
The effects of epidermal growth factor (EGF) on the growth and morphology of mouse embryo epithelial cells (MMC-E) were studied in culture. Growing cultures of epithelial cells were incubated in the media containing EGF or certain other mitogenic peptides. It was found that nanogram (ng) quantities of EGF stimulated growth in these cells and caused reversible phenotypic changes in these cells. These changes were not observed in cultures treated with the other mitogens. The compact growing islands of MMC-E cells were surrounded by elongated border cells [12]. EGF induced the elongated border cells to flatten and spread. The change of the elongated border cells into polygonal, flattened cells was dependent on the dose of EGF. After treatment with higher concentrations of EGF all cells appeared more flattened and their cytoplasm was more granular than that of the controls. Scanning electron microscopic studies (SEM) showed that the elongated border cells in the control cultures were distinctly higher than the cells inside the islands, while after exposure to EGF they flattened and had fewer surface microvilli than control cells. When EGF was removed and the cells were further cultivated in media without EGF, the border cells became smaller and elongated, eventually resembling those in the control cultures. These results show that EGF may act as a regulatory factor in the control of the proliferation and differentiation of mouse epithelial cells.  相似文献   

13.
The epidermal growth factor-induced calcium signal in A431 cells   总被引:24,自引:0,他引:24  
Addition of epidermal growth factor (EGF) to human A431 cells causes a 2-4-fold increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured by quin-2 fluorescence. The EGF effect is rapid but transient: [Ca2+]i reaches a maximum within 30-60 s and then returns to its resting value (182 +/- 3 nM) over a 5-8-min period. The EGF-induced [Ca2+]i rise is completely dependent on extracellular Ca2+, is abolished by La3+ and Mn2+, and is not accompanied by changes in membrane potential (mean values of -64 mV). Serum also elicits a transient [Ca2+]i rise in A431 cells, but this response is not dependent on the presence of extracellular Ca2+. The tumor promoter 12-O-tetradecanoylphorbol 13-acetate completely inhibits the EGF- and serum-induced increases in [Ca2+]i without affecting basal [Ca2+]i levels. Our results, together with previous 45Ca2+ uptake data (Sawyer, S. T., and Cohen, S. (1981) Biochemistry 20, 6280-6286), suggest that while serum factors trigger the release of Ca2+ from internal stores, EGF acts by opening a voltage-independent Ca2+ channel in the plasma membrane. The data further suggest a role for protein kinase C in attenuating the Ca2+-mobilizing mechanisms of EGF and serum.  相似文献   

14.
Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.  相似文献   

15.
Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation through its two Src homology (SH) 2 domains and its single SH3 domain, which interact with signaling molecules in response to various growth factors and hormones. However, the role of the SH domains in the growth factor-induced regulation of PLC-gamma1 is unclear. By peptide-mass fingerprinting analysis we have identified Cbl as a binding protein for the SH3 domain of PLC-gamma1 from rat pheochromatocyte PC12 cells. Association of Cbl with PLC-gamma1 was induced by epidermal growth factor (EGF) but not by nerve growth factor (NGF). Upon EGF stimulation, both Cbl and PLC-gamma1 were recruited to the activated EGF receptor through their SH2 domains. Mutation of the SH2 domains of either Cbl or PLC-gamma1 abrogated the EGF-induced interaction of PLC-gamma1 with Cbl, indicating that SH2-mediated translocation is essential for the association of PLC-gamma1 and Cbl. Overexpression of Cbl attenuated EGF-induced tyrosine phosphorylation and the subsequent activation of PLC-gamma1 by interfering competitively with the interaction between PLC-gamma1 and EGFR. Taken together, these results provide the first indications that Cbl may be a negative regulator of intracellular signaling following EGF-induced PLC-gamma1 activation.  相似文献   

16.
17.
The TRPC1 (transient receptor potential canonical-1) channel is a constituent of the nonselective cation channel that mediates Ca2+ entry through store-operated channels (SOCs) in human endothelial cells. We investigated the role of protein kinase Calpha (PKCalpha) phosphorylation of TRPC1 in regulating the opening of SOCs. Thrombin or thapsigargin added to the external medium activated Ca2+ entry after Ca2+ store depletion, which we monitored by changes in cellular Fura 2 fluorescence. Internal application of the metabolism-resistant analog of inositol 1,4,5-trisphosphate (IP3) activated an inward cationic current within 1 min, which we recorded using the whole cell patch clamp technique. La3+ or Gd3+ abolished the current, consistent with the known properties of SOCs. Pharmacological (G?6976) or genetic (kinase-defective mutant) inhibition of PKCalpha markedly inhibited IP3-induced activation of the current. Thrombin or thapsigargin also activated La3+-sensitive Ca2+ entry in a PKCalpha-dependent manner. We determined the effects of a specific antibody directed against an extracellular epitope of TRPC1 to address the functional importance of TRPC1. External application of the antibody blocked thrombin- or IP3-induced Ca2+ entry. In addition, we showed that addithrombin or thapsigargin induced phosphorylation of TRPC1 within 1 min. Thrombin failed to induce TRPC1 phosphorylation in the absence of PKCalpha activation. Phosphorylation of TRPC1 and the resulting Ca2+ entry were essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. These results demonstrate that PKCalpha phosphorylation of TRPC1 is an important determinant of Ca2+ entry in human endothelial cells.  相似文献   

18.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   

19.
20.
TRP channels have been associated with cell proliferation and aggressiveness in several cancers. In particular, TRPC1 regulates cell proliferation and motility, two processes underlying cancer progression. We and others have described the mechanisms of TRPC1-dependent cell migration. However, the involvement of TRPC1 in cell proliferation remains unexplained. In this study, we show that siRNA-mediated TRPC1 depletion in non small cell lung carcinoma cell lines induced G(0)/G(1) cell cycle arrest resulting in dramatic decrease in cell growth. The expression of cyclins D1 and D3 was reduced after TRPC1 knockdown, pointing out the role of TRPC1 in G(1)/S transition. This was associated with a decreased phosphorylation and activation of EGFR and with a subsequent disruption of PI3K/Akt and MAPK downstream pathways. Stimulation of EGFR by its natural ligand, EGF, induced Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry through TRPC1. Ca(2+) entry through TRPC1 conversely activated EGFR, suggesting that TRPC1 is a component of a Ca(2+)-dependent amplification of EGF-dependent cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号