首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary normal human oral keratinocytes (NHOKs) terminally differentiate in serial subculture. To investigate whether this subculture-induced differentiation of NHOKs affects integrin expression and cell-matrix interaction, we studied the expression levels of integrin subunits and cellular response to the extracellular matrix (ECM) proteins in NHOKs at different population doublings. The phosphorylation statuses of focal adhesion kinase (FAK), extracellular signal regulated kinase (ERK), p38, and c-Jun amino-terminal kinase (JNK) were also determined in NHOK cells cultured on ECM proteins, to evaluate the functions of integrins with respect to cellular responses to ECM proteins. The expression levels of alpha3 and beta1 integrin subunits progressively decreased in NHOKs undergoing terminal differentiation. The ability of NHOKs to spread upon laminin and type I collagen significantly decreased in terminally differentiated oral keratinocytes. Keratinocyte migration was significantly increased on type I collagen for terminally differentiated NHOKs. Similar results were seen following preincubation of rapidly proliferating NHOKs with function-blocking antibodies to alpha3 or beta1 integrin subunit. In contrast, fibronectin had no effect on cellular responses in NHOKs, which were almost negligible in the expression levels of alpha5 integrin subunits. The extent of FAK phosphorylation in terminally differentiated NHOKs was notably lower than that of rapidly proliferating cells, but was enhanced in terminally differentiated cells that were cultured on type I collagen. Our results indicate that decreased expression of alpha3 and beta1 integrin subunits is responsible for differentiation-associated changes in cells behavior in terminally differentiated oral keratinocytes. Our data also show that the abrogation of the alpha5beta1 integrin function caused by omitting alpha5 subunit is linked to the loss of a cell-fibronectin interaction in human oral keratinocytes.  相似文献   

2.
Transforming growth factorβ1 (TGFβ1) elicits a multitude of cellular responses from the epithelial-derived human colon cancer Moser cells. TGFβ1 induces the expression of laminin and fibronectin, and previous studies show that the induction of fibronectin is functionally associated with the regulation of carcinoembryonic antigen (CEA) expression by TGFβ1 (Huang and Chakrabarty, 1994, J Biol Chem 269:28764–28768). In this study we constructed antisense laminin chain-specific expression vectors and determined their efficacy in blocking the expression and the induction of the large multichain laminin molecule by TGFβ1. We also determined the functional role of laminin in several TGFβ1-mediated responses: growth inhibition, downmodulation of anchorage-independent growth, and cellular invasion. Expression of either antisense laminin chain A, B1, or B2 RNA resulted in a downmodulation of endogenous laminin mRNA expression and blocked the induction of laminin protein by TGFβ1 without affecting the induction of other adhesion molecules such as fibronectin or CEA. It is concluded that antisense RNA directed to only one of the laminin chains was sufficient to disrupt the induction of the complex laminin molecule in quite a specific manner. Expression of antisense laminin RNA downregulated cellular adhesion to extracellular matrix (ECM) laminin and blocked the ability of TGFβ1 to upmodulate adhesion to ECM laminin. Expression of antisense laminin RNA, however, did not alter the downregulating effect of TGFβ1 on cellular proliferation, anchorage-independent growth, or cellular invasion, suggesting that the induction of laminin did not play a significant functional role in these TGFβ1-mediated cellular responses. It is likely that other adhesion pathways may be involved in mediating the action of TGFβ1 in this cell line. J. Cell. Physiol. 178:296–303, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
Clonal cell lines were established from adult rat tibia cells immortalized with SV-40 large T antigen. One clone (TRAB-11), in which retinoic acid (RA) induced alkaline phosphatase (AP) activity, was selected for further study. The TRAB-11 cells express high levels of type I collagen mRNA, type IV collagen, fibronectin, practically no type III collagen, little osteopontin, and no osteocalcin. RA stimulates proliferation of TRAB-11 cells (starting at 10 pM) and survival (starting at 100 pM). TRAB-11 cells synthesize fibroblast growth factor-2 (FGF-2), which has potent autocrine mitogenic effects on these cells and acts synergistically with RA. TRAB-11 cells attach better to type IV collagen than to fibronectin or laminin. Cell attachment to type IV collagen is increased by RA and decreased (65%) by an antibody directed against alpha1beta1 integrin. RA up-regulates steady-state levels of alpha1, mRNA without affecting beta1 mRNA expression. In conclusion, we report the establishment of a clonal cell line from the outgrowth of adult rat tibiae which is highly sensitive to RA in its growth and survival in culture, apparently as a result of integrin-mediated cell interaction with extracellular matrix proteins.  相似文献   

4.
We have examined cultures of neonatal human foreskin keratinocytes (HFKs) to determine the ligands and functions of integrins alpha 2 beta 1, and alpha 3 beta 1 in normal epidermal stratification and adhesion to the basement membrane zone (BMZ) in skin. We used three assay systems, HFK adhesion to purified extracellular matrix (ECM) ligands and endogenous secreted ECM, localization of integrins in focal adhesions (FAs), and inhibition of HFK adhesion with mAbs to conclude: (a) A new anti-alpha 3 beta 1 mAb, P1F2, localized alpha 3 beta 1 in FAs on purified laminin greater than fibronectin/collagen, indicating that laminin was the best exogeneous ligand for alpha 3 beta 1. However, in long term culture, alpha 3 beta 1 preferentially codistributed in and around FAs with secreted laminin-containing ECM, in preference to exogenous laminin. Anti-alpha 3 beta 1, mAb P1B5, detached prolonged cultures of HFKs from culture plates or from partially purified HFK ECM indicating that interaction of alpha 3 beta 1 with the secreted laminin-containing ECM was primarily responsible for HFK adhesion in long term culture. (b) In FA assays, alpha 2 beta 1 localized in FAs conincident with initial HFK adhesion to exogenous collagen, but not laminin or fibronectin. However, in inhibition assays, anti-alpha 2 beta 1 inhibited initial HFK adhesion to both laminin and collagen. Thus, alpha 2 beta 1 contributes to initial HFK adhesion to laminin but alpha 3 beta 1 is primarily responsible for long-term HFK adhesion to secreted laminin-containing ECM. (c) Serum or Ca2(+)-induced aggregation of HFKs resulted in relocation of alpha 2 beta 1 and alpha 3 beta 1 from FAs to cell-cell contacts. Further, cell-cell adhesion was inhibited by anti-alpha 3 beta 1 (P1B5) and a new anti-beta 1 mAb (P4C10). Thus, interaction of alpha 3 beta 1 with either ECM or membrane coreceptors at cell-cell contacts may facilitate Ca2(+)-induced HFK aggregation. (d) It is suggested that interaction of alpha 3 beta 1 with a secreted, laminin-containing ECM in cultured HFKs, duplicates the role of alpha 3 beta 1 in basal cell adhesion to the BMZ in skin. Further, relocation of alpha 2 beta 1 and alpha 3 beta 1 to cell-cell contacts may result in detachment of cells from the BMZ and increased cell-cell adhesion in the suprabasal cells contributing to stratification of the skin.  相似文献   

5.
We have compared the adhesive properties and integrin expression profiles of cultured human epidermal keratinocytes and a strain of nondifferentiating keratinocytes (ndk). Both cell types adhered to fibronectin, laminin, and collagen types I and IV, but ndk adhered more rapidly and at lower coating concentrations of the proteins. Antibody blocking experiments showed that adhesion of both cell types to fibronectin was mediated by the alpha 5 beta 1 integrin and to laminin by alpha 3 beta 1 in synergy with alpha 2 beta 1. Keratinocytes adhered to collagen with alpha 2 beta 1, but an antibody to alpha 2 did not inhibit adhesion of ndk to collagen. Both cell types adhered to vitronectin by alpha v-containing integrins. Immunoprecipitation of surface-iodinated and metabolically labeled cells showed that in addition to alpha 2 beta 1, alpha 3 beta 1, and alpha 5 beta 1, both keratinocytes and ndk expressed alpha 6 beta 4 and alpha v beta 5. ndk expressed all these integrins at higher levels than normal keratinocytes. ndk, but not normal keratinocytes, expressed alpha v beta 1 and alpha v beta 3; they also expressed alpha 1 beta 1, an integrin that was not consistently detected on normal keratinocytes. Immunofluorescence experiments showed that in stratified cultures of normal keratinocytes integrin expression was confined to cells in the basal layer; terminally differentiating cells were unstained. In contrast, all cells in the ndk population were integrin positive. Our observations showed that the adhesive properties of ndk differ from normal keratinocytes and reflect differences in the type of integrins expressed, the level of expression and the distribution of integrins on the cell surface. ndk thus have a number of characteristics that distinguish them from normal basal keratinocytes.  相似文献   

6.
Skin extracellular matrix (ECM) molecules regulate a variety of cellular activities, including cell movement, which are central to wound healing and metastasis. Regulated cell movement is modulated by proteases and their associated molecules, including the serine proteases urinary-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) and their inhibitors (PAIs). As a result of wounding and loss of basement membrane structure, epidermal keratinocytes can become exposed to collagen. To test the hypothesis that during wounding, exposed collagen, the most abundant ECM molecule in the skin, regulates keratinocyte PA and PAI gene expression, we utilized an in vitro model in which activated keratinocytes were cultured in dishes coated with collagen or other ECM substrates. tPA, uPA, and PAI-1 mRNA and enzymatic activity were detected when activated keratinocytes attached to fibronectin, vitronectin, collagen IV, and RGD peptide. In contrast, adhesion to collagen I and collagen III completely suppressed expression of PAI-1 mRNA and protein and further increased tPA expression and activity. Similarly, keratinocyte adhesion to laminin-1 suppressed PAI-1 mRNA and protein expression and increased tPA activity. The suppressive effect of collagen I on PAI-1 gene induction was dependent on the maintenance of its native fibrillar structure. Thus, it would appear that collagen- and laminin-regulated gene expression of molecules associated with plasminogen activation provides an additional dimension in the regulation of cell movement and matrix remodeling in skin wound healing.  相似文献   

7.
Keratinocyte growth factor (KGF) induction of keratinocyte attachment and migration on provisional and basement membrane proteins was examined. KGF-treated keratinocytes showed increased attachment to collagen types I and IV and fibronectin, but, not to laminin-1, vitronectin, or tenascin. This increase was time- and dose-dependent. Increase in attachment occurred with 2 10 microg/ml of ECM proteins. This KGF-stimulated cell attachment was beta1 integrin-dependent but was not associated with stimulation of the cell surface expression nor affinity (activity) of the collagen integrin receptor (alpha2beta1) nor the fibronectin integrin receptors (alpha5beta1 or alphav). At the basal layer of KGF-treated cells significant accumulation of beta1 integrins was found at the leading edges, and actin stress fibers colocalized with beta1. KGF also induced migratory phenotype and stimulated keratinocyte migration on both fibronectin and collagen types I and IV but not on laminin-1, vitronectin nor tenascin. The results suggest that in addition to its proliferation promoting activity. KGF is able to modulate keratinocyte adhesion and migration on collagen and fibronectin. Our data suggest that KGF induced integrin avidity (clustering), a signaling event, which is not dependent on the alteration of cell surface integrin numbers.  相似文献   

8.
Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.  相似文献   

9.
10.
Production and maintenance of extracellular matrix (ECM) is an essential aspect of endothelial cell (EC) function. ECM surfaces composed of collagen type IV and laminin support an atheroprotective endothelium, while fibronectin may encourage an atheroprone endothelium through inflammation or wound repair signaling. ECs maintain this underlying structure through regulation of protein production and degradation, yet the role of cytoskeletal alignment on this regulation is unknown. To examine the regulation and production of ECM by ECs with an atheroprotective phenotype, ECs were micropatterned onto lanes, which created an elongated EC morphology similar to that seen with unidirectional fluid shear stress application. Collagen IV and fibronectin protein production were measured as were gene expression of collagen IV, fibronectin, laminin, MMP2, MMP9, TIMP1, TIMP2, and TGF-β1. ECs were also treated with TNF to simulate an injury model. Micropattern-induced elongation led to significant increases in collagen IV and fibronectin protein production, and collagen IV, laminin, and TGF-β1 gene expression, but no significant changes in the MMP or TIMP genes. TNF treatment significantly increased collagen IV gene and protein production. These results suggest that the increase in ECM synthesis in micropattern-elongated ECs is likely regulated with TGF-β1, and this increase in ECM could be relevant to the atheroprotection needed for maintenance of a healthy endothelium in vivo.  相似文献   

11.
Cultured human foreskin keratinocytes (HFKs) adhere to and grow on nonfibrous collagen via integrin alpha2beta1. During incubation, the receptors used for adhesion are changed to integrins alpha3beta1 and alpha6beta4 and those receptors bind to laminin 5 which is deposited by keratinocytes themselves. In this report, we examined the behaviors of HFKs and transformed keratinocytes on collagen fibril gels. These cells adhered to and spread on collagen gels using integrin alpha2beta1. After several hours on collagen gels, however, cells became round and apoptosis occurred. The behavior of keratinocytes contrasted to that of fibroblasts that grew well even on collagen gel. At the point of apoptosis, integrins alpha2beta1 and alpha3beta1 were not found in the contact region of HFKs. Also, deposition of laminin 5 on collagen gel was not found despite the synthesis of mRNA for laminin 5 and laminin 10/11, while soluble laminin 5 protein is readily detectable. Phosporylation of Akt, which is known as a survival signal, was detected in HFKs cultured on coated collagen; however, the protein level and signals of Akt were dramatically decreased on collagen gel after 1 day of culture. These results indicate that collagen gel has different effects than nonfibrous collagen on HFKs and transformed keratinocytes and the interactions of integrin alpha3beta1 and laminin 5/10/11 are indispensable for maintenance of keratinocyte adhesion and survival.  相似文献   

12.
Adhesion of keratinocytes in a wound outgrowth to laminin 5 in the basement membrane via integrins alpha6beta4 and alpha3beta1 is distinct from adhesion to dermal collagen via alpha2beta1 or to fibronectin via alpha5beta1. Leading cells in the outgrowth are distinguished from following keratinocytes by deposition of laminin 5, failure to communicate via gap junctions and sensitivity to toxin B, an inhibitor of RhoGTPase. Laminin 5 deposited by leading keratinocytes onto dermal collagen dominates over dermal ligands and changes the cell signals required for adhesion from collagen-dependent to laminin-5-dependent. Thus, deposition of laminin 5 can instruct keratinocytes to switch from an activated phenotype to a quiescent and integrated epithelial phenotype.  相似文献   

13.
The expression of laminin, a major constituent of endometrial cell basement membranes, is increased during differentiation of human endometrial stromal cells (decidualization). To determine whether laminin plays a role in decidualization, we studied the effects of laminin substrate on the synthesis and release of prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1), two major secretory proteins of decidualized stromal cells. Endometrial stromal cells were plated on laminin as well as several other extracellular matrix (ECM) proteins (types 1 and IV collagen or fibronectin) and on plastic, and cultured in media containing medroxyprogesterone acetate (MPA) and estradiol. Cells cultured on plastic or ECM proteins displayed similar morphological changes indicative of decidualization. However, the release of PRL and IGFBP-1 from cells cultured on plastic and ECM proteins (types 1 and IV collagen and fibronection) was approximately 2.1-fold and 2.8-fold greater respectively, than from cells cultured on laminin. The decrease in PRL and IGFBP-1 expression in cells cultured on laminin was not due to differences in initial cell attachment efficiency or final DNA content. In addition, laminin had no effect on the content of laminin protein or fibronectin mRNA levels, indicating that the effects of laminin on PRL and IGFBP-1 were specific. PGE2 stimulated the release of PRL and IGFBP-1 from cells cultured on laminin to levels comparable to those from cells cultured on plastic or other ECM proteins. This indicates that the decrease in PRL and IGFBP-1 release by laminin was not due to a generalized unresponsiveness. In contrast to the effects of laminin during decidualization, PRL expression was not altered by laminin in terminally differentiated decidual cells isolated at term. Our results support a role for laminin in selectively regulating PRL and IGFBP-1 gene expression during in vitro decidualization of human endometrial stromal cells. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Transforming growth factor beta1 (TGFbeta) simultaneously induces the expression of fibronectin, fibronectin receptor, laminin, and laminin receptor (alpha6beta1 integrin) in the human colon cancer cell line Moser (Int J Cancer, 57:742, 1994). Induction of fibronectin and induction of fibronectin receptor by TGFB are tightly coupled, and disrupting fibronectin induction disrupts the induction of fibronectin receptor and cellular adhesion to fibronectin (J Cellular Physiol, 170:138, 1997). We recently demonstrated the efficacy of using antisense chain-specific laminin RNA expression vectors to disrupt the induction by TGFP of the multichain laminin molecule (J Cellular Physiol, 178:296, 1999). We now show in this report that Moser cells used alpha6 and beta1 integrins to adhere to laminin, and, as is the fibronectin and fibronectin receptor system, disrupting the induction by TGFbeta of the ligand laminin by the expression of antisense laminin A chain RNA disrupted the induction of 125I-laminin binding and cellular adhesion to laminin. Disrupting laminin induction also blocked the induction of alpha6 and beta1 integrin laminin receptor by TGFbeta. We conclude that disrupting the induction of the ligand laminin by TGFbeta disrupts TGFbeta-regulated laminin receptor function by suppressing the induction of alpha6 and beta1 integrins. Therefore, targeted disruption of the ligand laminin may be an effective means in disrupting the function of both the ligand and its receptor in cells that utilize the laminin and laminin receptor system in malignant cell behavior.  相似文献   

15.
The interaction of transforming growth factor beta (TGF beta) with extracellular matrix macromolecules was examined by using radiolabeled TGF beta and various matrix macromolecules immobilized on nitrocellulose. TGF beta bound to collagen IV with greater affinity than to other extracellular matrix macromolecules tested. Neither laminin nor fibronectin, both of which bind type IV collagen, interfered with the binding of TGF beta to type IV collagen. TGF beta 2 competed effectively with TGF beta 1 for binding to type IV collagen. The biological effect of TGF beta was tested by an assay based on inhibition of proliferation of an osteoblast cell line, MC3T3-E1. The results demonstrated that the effect of TGF beta 1 was sustained when cells were grown on type IV collagen compared to cells grown on laminin, collagen type I, and plastic. These results demonstrate that extracellular matrix components may function as an affinity matrix for binding and immobilizing soluble growth and differentiation factors. In view of the demonstrated role of basement membranes in development the present results imply an important function for transforming growth factor beta bound to collagen IV in local regulation of cell proliferation and differentiation.  相似文献   

16.
The appearance of extracellular matrix molecules and their receptors represent key events in the differentiation of cells of the kidney. Steady-state mRNA levels for a laminin receptor, the laminin B1, B2, and A chains, and the alpha 1-chain of collagen IV (alpha 1[IV]), were examined in mouse kidneys at 16 d gestation and birth, when cell differentiation is active, and 1-3 wk after birth when this activity has subsided. Northern analysis revealed that mRNA expression of laminin receptor precedes the alpha 1(IV) and laminin B chains whereas laminin A chain mRNA expression was very low. In situ hybridization reflected this pattern and revealed the cells responsible for expression. At 16 d gestation, laminin receptor mRNA was elevated in cells of newly forming glomeruli and proximal and distal tubules of the nephrogenic zone located in the kidney cortex. These cells also expressed mRNA for alpha 1(IV) and laminin chains. At birth, mRNA expression of receptor and all chains remained high in glomeruli but was reduced in proximal and distal tubules. At 1 wk after birth, expression was located in the medulla over collecting ducts and loops of Henle. Little expression was detectable by 3 wk. These results suggest that cellular expression of steady-state mRNA for laminin receptor, laminin, and collagen IV is temporally linked, with laminin receptor expression proceeding first and thereafter subsiding.  相似文献   

17.
18.
Cellular adhesions to other cells and to the extracellular matrix play crucial roles in the malignant progression of cancer. In this study, we investigated the role of protein kinase C (PKC) in the regulation of cell-substratum adhesion by the breast adenocarcinoma cell line MCF-7. A PKC activator, 12-O-tetradecanoylphorbol-l, 3-acetate (TPA), stimulated cell adhesion to laminin and collagen I in a dose-dependent manner over a 1- to 4-h interval. This enhanced adhesion was mediated by alpha2beta1 integrin, since both anti-alpha2 and anti-beta1 blocking antibodies each completely abrogated the TPA-induced adhesion. FACS analysis determined that TPA treatment does not change the cell surface expression of alpha2beta1 integrin over a 4-h time interval. However, alpha2beta1 levels were increased after 24 h of TPA treatment. Thus, the enhanced avidity of alpha2beta1-dependent cellular adhesion preceded the induction of alpha2beta1 cell surface expression. Northern blot analysis revealed that mRNA levels of both alpha2 and beta1 subunits were increased after exposure to TPA for 4 h, indicating that the induction of alpha2beta1 mRNA preceded that of its cell surface expression. This further suggested that the TPA-induced avidity of alpha2beta1 was independent of increased expression of alpha2beta1. Pretreatment of cells with the PKC inhibitor calphostin C partially antagonized the TPA-induced increase in expression of alpha2beta1 integrin expression and of alpha2beta1-mediated cellular adhesion. To identify a possible mechanism by which TPA could be acting to promote the rapid induction of alpha2beta1 adhesion, we treated the cells with the Rho-GTPase inhibitor Clostridium botulinumexotoxin C3. C3 inhibited TPA-induced adhesion to laminin and collagen I in a dose-dependant manner, suggesting a likely role for Rho in TPA-induced adhesion. Together, these results suggest that PKC can modulate the alpha2beta1-dependent adhesion of MCF-7 cells by two distinct mechanisms: altering the gene expression of integrins alpha2 and beta1 and altering the avidity of the alpha2beta1 integrin by a Rho-dependant mechanism.  相似文献   

19.
Cells of the rat neuronal line, PC12, adhere well to substrates coated with laminin and type IV collagen, but attach poorly to fibronectin. Adhesion and neurite extension in response to these extracellular matrix proteins are inhibited by Fab fragments of an antiserum (anti-ECMR) that recognizes PC12 cell surface integrin subunits of Mr 120,000, 140,000, and 180,000 (Tomaselli, K. J., C. H. Damsky, and L. F. Reichardt. 1987. J. Cell Biol. 105:2347-2358). Here we extend our study of integrin structure and function in PC12 cells using integrin subunit-specific antibodies prepared against synthetic peptides corresponding to the cytoplasmic domains of the human integrin beta 1 and the fibronectin receptor alpha (alpha FN) subunits. Anti-integrin beta 1 immunoprecipitated a 120-kD beta 1 subunit and two noncovalently associated integrin alpha subunits of 140 and 180 kD from detergent extracts of surface-labeled PC12 cells. Immunodepletion studies using anti-integrin beta 1 demonstrated that these two putative alpha/beta heterodimers are identical to those recognized by the adhesion-perturbing ECMR antiserum. Anti-alpha FN immunoprecipitated fibronectin receptor heterodimers in human and rat fibroblastic cells, but not in PC12 cells. Thus, low levels of expression of the integrin alpha FN subunit can explain the poor attachment of PC12 cells to FN. The PC12 cell integrins were purified using a combination of lectin and ECMR antibody affinity chromatography. The purified integrins: (a) completely neutralize the ability of the anti-ECMR serum to inhibit PC12 cell adhesion to laminin and collagen IV; (b) have hydrodynamic properties that are very similar to those of previously characterized integrin alpha/beta heterodimeric receptors for ECM proteins; and (c) can be incorporated into phosphatidylcholine vesicles that then bind specifically to substrates coated with laminin or collagen IV but not fibronectin. Thus, the ligand-binding specificity of the liposomes containing the purified PC12 integrins closely parallels the substrate-binding preference of intact PC12 cells. These results demonstrate that mammalian integrins purified from a neuronal cell line can, when incorporated into lipid vesicles, function as receptors for laminin and type IV collagen.  相似文献   

20.
The steady-state levels of mRNAs coding for two components of basement membranes, the alpha 1 chain of type IV collagen and the B1 chain of laminin, were measured in the kidneys of male CDF rats following the induction of diabetes with streptozotocin for periods of between 2 days and 28 weeks. The concentration of mRNA for the alpha 1 chain of type IV collagen/microgram of RNA decreased markedly with age in control and diabetic rats. The diabetic level was significantly lower than control after 2 and 11 weeks of diabetes. After 28 weeks, however, there was no significant difference from the levels in control animals. Treatment of control and diabetic rats with the aldose reductase inhibitor Statil (350 mg/kg diet) did not affect the levels of the mRNA for the alpha 1 chain of type IV collagen. In contrast to the continuous decline in the concentration of mRNA for the alpha 1 chain of type IV collagen, the level of mRNA for the B1 chain of laminin increased two-fold between 11 and 28 weeks after induction of diabetes. This increase occurred as aging of control rats reduced the level of laminin B1 mRNA by approximately 50%. Treatment with Statil had no effect on laminin B1 mRNA levels. In control rats there was no change in the ratio of the levels of mRNAs for laminin B1: alpha 1 (IV) collagen with age. The mean ratio was 0.97 +/- 0.10 at 19 weeks and 1.0 +/- 0.10 at 36 weeks of age. In diabetic rats there was a marked increase in the ratio from 0.85 +/- 0.11 at 19 weeks to 3.2 +/- 1.2 at 36 weeks of age. The increased abundance of mRNA for laminin B1 raises the possibility that increased synthesis of laminin contributes to the thickening and abnormal function of renal basement membranes in streptozotocin-diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号