首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rates of anion net efflux from gramicidin-treated erythrocytes in the presence of a K gradient were measured at 25 degrees C, pH 7.8, as rates of loss of Ki. The experiments served to estimate the relative contributions of two hypothetical mechanisms to Cl net efflux at low extracellular Cl concentrations. Cl, Br, and NO3 net effluxes were measured into media of different Cl, Br, or NO3 concentrations, respectively, to determine and compare the relative rates of the extracellular anion-inhibitable components. They were 48, 160, and 230 mmol/(kg Hb X min), respectively, at a membrane potential of about -90 mV. This indicates that the anion-inhibitable efflux is not due solely to the return translocation of the empty transport site ("slippage") because slippage should be independent of the chemical nature of the anion. Cl net efflux was also measured as a function of the intracellular Cl concentration into media containing either 0 or 50 mM Cl. Under both conditions, net efflux was linearly dependent on Cli between 30 and 300 mM Cli and was 0 when back-extrapolated to 0 Cli. This observation is not compatible with the slippage process, which under these conditions would have been expected to be independent of Cli above 15 mM Cli. It was concluded that slippage contributes negligibly to Cl net efflux even at low extracellular anion concentrations and that the alternative process of "tunneling"--that is, movement of the anion through the anion transporter without a conformational change in a channel-type behavior--is the major, if not the sole, mechanism underlying Cl conductance.  相似文献   

2.
We have developed a new test to differentiate between ping-pong and simultaneous mechanisms for tightly coupled anion exchange. This test requires the use of a dead-end reversible noncompetitive inhibitor. As an example, we have applied the test to the anion exchanger of the HL60 cell using the salicylic acid derivative 3,5-diiodosalicylic acid (DIS), which reversibly inhibits HL60 cell Cl/Cl exchange. The concentration of DIS that causes 50% inhibition (ID50) increased only slightly as either intra- or extracellular chloride was increased, indicating that DIS inhibits HL60 anion exchange in a noncompetitive manner. In agreement with this observation, plots of the slope of the Dixon plot as a function of 1/[Clo] or 1/[Cli] were fit with straight lines with nonzero intercepts, indicating that DIS does not compete with either of the substrates ([Clo] and [Cli]). The secondary Dixon slope test is based on the fact that, for a dead-end inhibitor such as DIS, the slope of the Dixon plot slope vs. 1/[Cli] (secondary Dixon slope or SDS) is independent of extracellular Cl when the exchange mechanism follows ping-pong kinetics. Similarly, the SDS calculated from a plot as a function of 1/[Clo] is also independent of intracellular Cl for a ping-pong exchanger. In contrast to this prediction, we found that for DIS inhibition of Cl/Cl exchange in HL60 cells the slope of the Dixon plot slope vs. 1/[Cli] decreased by a factor of 2.5-fold when [Clo] was increased from 1 to 11 mM (P < 0.0001). This change in the SDS rules out ping-pong kinetics, but is consistent with a simultaneous model of Cl/Cl exchange in which there are extra- and intracellular anion binding sites, both of which must be occupied by suitable anions in order to allow simultaneous exchange of the ions.  相似文献   

3.
Regulation of Cl/HCO3 exchange in gastric parietal cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
Microspectrofluorimetry of the fluorescent indicators 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein and 6-methoxy-N-(3-sulfopropyl)-quinolinium was used to measure intracellular pH (pHi), intracellular Cl (Cli), and transmembrane fluxes of HCO3 and Cl in single parietal cells (PC) in isolated rabbit gastric glands incubated in HCO3/CO2-buffered solutions. Steady-state pHi was 7.2 in both resting (50 microM cimetidine) and stimulated (100 microM histamine) PCs. Transmembrane anion (HCO3 or Cl) flux rates during Cl removal from or readdition to the perfusate were the same in resting and stimulated PCs. These rates increased at alkaline pHi, though this pHi dependence was small in the physiological range. Maximum velocity (Vmax) for Cl influx or HCO3 efflux was 80-110 mM/min at pHi 7.6-7.8, and the Km for extracellular concentrations of Cl (Clo) was 25 mM; in the physiological range (pHi 7.1-7.3), Vmax for anion fluxes was approximately 50 mM/min. Steady-state Cli in the unstimulated PC was 62 +/- 5 mM, but on histamine stimulation, Cli decreased rapidly to 25 mM and then increased back to a steady-state level of 44 mM. HCO3 fluxes due to Cl removal or readdition were completely blocked by 0.5 mM 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H2DIDS), but Cl fluxes were only inhibited by 80%. H2DIDS did not inhibit the decrease in Cli that occurred with histamine treatment. Diphenylamine carboxylate (0.5 mM) inhibited Cl flux by only 50% and caused no additional inhibition of Cl flux when used in conjunction with H2DIDS. Transmembrane anion fluxes during solution Cl removal or readdition occurred 80% through the anion exchanger at the basal membrane and 20% through other pathway(s), presumably the Cl channel in the apical membrane. We conclude that the increase in transport activity via the Cl/HCO3 exchanger that occurs during histamine-induced increases in HCl secretion is due mostly to the decrease in Cli. In the resting cell with Cli = 62 mM, Clo = 120 mM, pHi = 7.2, and extracellular pH = 7.4, the anion exchanger is poised near its thermodynamic equilibrium. During histamine stimulation Cli drops from 62 mM to 44 mM, the thermodynamic equilibrium of the anion exchanger at the basolateral membrane is disturbed, and the anion exchanger then exchanges cellular HCO3 for extracellular Cl. Cli serves a crucial regulatory role in stimulus-secretion coupling in the PC.  相似文献   

4.
Unidirectional chloride-36 fluxes were measured in internally dialyzed barnacle giant muscle fibers. About 50--60% of the Cl efflux was irreversibly blocked by the amino-group reactive agent, 4-acetamido-4'-isothiocyano-stilbene-2,2'-disulfonic acid (SITS), when it was applied either intra- or extracellularly. Similarly, Cl influx was also blocked by SITS. No significant effect on [Cl]i of SITS was noted in intact muscle fibers. However, the rate of net Cl efflux from muscle fibers which were Cl-loaded by overnight storage at 6 degrees C could be slowed by SITS treatment. Two classes of anions were defined based upon their effects on Cl efflux. Methanesulfonate and nitrate inhibited Cl efflux either when they replaced external chloride or when they were added to a constant external chloride concentration. The other group of anions (propionate, formate) stimulated both Cl efflux and influx and such stimulation could be blocked by SITS. Propionate influx was not nearly as large as the stimulated Cl efflux and was unaffected by SITS. Neither the effects of SITS nor those of the anion substitutes could be simply accounted for by changes in the membrane resting potential or conductance. These results suggest a mediated transport system for chloride across the barnacle sarcolemma.  相似文献   

5.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

6.
Chloride self-exchange across the human erythrocyte membrane at alkaline extracellular pH (pHO) and constant neutral intracellular pH (pH(i)) can be described by an exofacial deprotonatable reciprocating anion binding site model. The conversion of the transport system from the neutral to the alkaline state is related to deprotonation of a positively charged ionic strength- and substrate-sensitive group. In the absence of substrate ions ([ClO] = 0) the group has a pK of approximately 9.4 at constant high ionic strength (equivalent to approximately 150 mM KCl) and a pK of approximately 8.7 at approximately zero ionic strength. The alkaline ping-pong system (examined at constant high ionic strength) demonstrates outward recruitment of the binding sites with an asymmetry factor of approximately 0.2, as compared with the inward recruitment of the transport system at neutral pHO with an asymmetry factor of approximately 10. The intrinsic half-saturation constant for chloride binding, with [Cli] = [Clo], increased from approximately 30 mM at neutral to approximately 110 mM at alkaline pHO. The maximal transport rate was a factor of approximately 1.7 higher at alkaline pHO. This increase explains the stimulation of anion transport, the "modifier hump," observed at alkaline pHO. The translocation of anions at alkaline pHO was inhibited by deprotonation of another substrate-sensitive group with an intrinsic pK of approximately 11.3. This group together with the group with a pK of approximately 9.4 appear to form the essential part of the exofacial anion binding site. The effect of extracellular iodide inhibition on chloride transport as a function of pHO could, moreover, be simulated if three extracellular iodide binding constants were included in the model: namely, a competitive intrinsic iodide binding constant of approximately 1 mM in the neutral state, a self-inhibitor binding constant of approximately 120 mM in the neutral state, and a competitive intrinsic binding constant of approximately 38 mM in the alkaline state.  相似文献   

7.
The relationship between the resting membrane potential and the intracellular ionic concentrations in human monocytes was investigated. Cell volume, cell water content, and amount of intracellular K+, Na+, and Cl- were measured to determine the intracellular concentrations of K+ (Ki), Na+ (Nai) and Cl- (Cli) of monocytes, and of lymphocytes and neutrophils. Values found for monocytes were similar to those for neutrophils, i.e., cell volumes were 346 and 345 micron3, respectively, cell water content 78%, and Ki, 128 and 125, Nai, 24 and 26, and Cli, 102 and 103 mmol/l cell water, respectively. Lymphocytes, however, had different values: 181 micron3 cell volume, 77% cell water content, and for Ki, Nai, and Cli, 165, 37, and 91 mmol/l cell water, respectively. The resting membrane potential of cultured human monocytes (range -30 to -40 mV), determined by measurement of the peak potential occurring within the first milliseconds after microelectrode entry, was most dependent on extracellular K+, followed by Cl-, and Na+. The membrane permeability ratio of Cl- to K+ was estimated by use of the constant field equation to be 0.23 (range 0.22 to 0.30).  相似文献   

8.
Ebel H  Günther T 《FEBS letters》2003,543(1-3):103-107
Mg(2+) efflux from rat erythrocytes was measured in NaCl, NaNO(3), NaSCN and Na gluconate medium. Substitution of extracellular and intracellular Cl(-) with the permeant anions NO(3)(-) and SCN(-) reduced Mg(2+) efflux via Na(+)/Mg(2+) antiport. After substitution of extracellular Cl(-) with the non-permeant anion gluconate, Mg(2+) efflux was not significantly reduced. In Na gluconate medium, an influence of the changed membrane potential and intracellular pH on Mg(2+) efflux could be excluded. The results indicate the existence of Cl(-)-independent Na(+)/Mg(2+) antiport and of Na(+)/Mg(2+) antiport stimulated by intracellular Cl(-). Intracellular Cl(-), as determined by means of (36)Cl(-), was found to stimulate Na(+)/Mg(2+) antiport through a cooperative effect according to a sigmoidal kinetics. The Hill coefficient for intracellular Cl(-) amounted to 1.4-1.8, indicating that two intracellular Cl(-) may be simultaneously active. With respect to specificity, Cl(-) was most effective, followed by Br(-), J(-), and F(-). Stimulation of Na(+)/Mg(2+) antiport by intracellular Cl(-) together with intracellular Mg(2+) may play a role during deoxygenation of erythrocytes and in essential hypertension.  相似文献   

9.
The ionic permeability of a voltage-dependent Cl channel of rat hippocampal neurons was studied with the patch-clamp method. The unitary conductance of this channel was approximately 30 pS in symmetrical 150 mM NaCl saline. Reversal potentials interpreted in terms of the Goldman-Hodgkin-Katz voltage equation indicate a Cl:Na permeability ratio of approximately 5:1 for conditions where there is a salt gradient. Many anions are permeant; permeability generally follows a lyotropic sequence. Permeant cations include Li, Na, K, and Cs. The unitary conductance does not saturate for NaCl concentrations up to 1 M. No Na current is observed when the anion Cl is replaced by the impermeant anion SO4. Unitary conductance depends on the cation species present. The channel is reversibly blocked by extracellular Zn or 9-anthracene carboxylic acid. Physiological concentrations of Ca or Mg do not affect the Na:Cl permeability ratio. The permeability properties of the channel are consistent with a permeation mechanism that involves an activated complex of an anionic site, an extrinsic cation, and an extrinsic anion.  相似文献   

10.
Summary The efflux of36Cl and42K from frog's sartorius muscles equilibrated in Ringer's fluid with added KCl were measured in the absence and presence of salicylate, benzoate, and acetylsalicylate. The transmembrane potential and resistance were also measured in sartorii under similar conditions. Although the rate coefficient for loss of42K remained reasonably constant over extended experimental periods for untreated muscles, the rate coefficient for loss of36Cl fluctuated in many muscles giving rise to minima and maxima. The aromatic anions mentioned increased the efflux of chloride while having no detectable effect on the potassium efflux. The aromatic anion-stimulated chloride efflux was insensitive to alterations of external pH and was markedly reduced when nitrate replaced external chloride. No detectable changes in transmembrane potential or resistance were produced by salicylate, the most extensively studied aromatic anion. The results suggest that salicylate and the other aromatic anions stimulate an exchange diffusion mechanism for chloride.  相似文献   

11.
The effect of foreign anions on transepithelial potential difference and transepithelial input conductance was studied in the isolated perfused Necturus kidney. Two microelectrodes (recording and current-injecting) were inserted into the lumen of single proximal tubules and the peritubular perfusate was shifted reversibly for 30-60 sec from a physiologic Ringer's solution to a test solution in which chloride was replaced isosmotically by a foreign anion. The permeability sequence, obtained by potential measurements, was: lactate less than glutamate less than gluconate less than pyruvate less than benzene sulfonate less than or equal to acetate less than or equal to F less than propionate less than BrO3 less than formate less than ClO3 less than Cl than ClO4 less than I less than or equal to Br less than NO3 less than SCN. Transepithelial conductance decreased when the tissue was perfused with anions less permeable than chloride but the conductance sequence was different from the permeability sequence. Such discrepancies were more pronounced during perfusion with hyperpolarizing anions; ClO4 and I- (both more permeable than chloride) produced an important decrease in transepithelial conductance, followed by incomplete reversibility when the perfusion was shifted again to chloride Ringer's. The results are best explained by the presence of weak positive fixed charges, governing anion permeation, at the shunt pathway of the proximal tubule. An analysis of the data allows tentative estimates of shape and size of the sites.  相似文献   

12.
The present results demonstrate the sensitivity of the Corning chloride liquid ion exchanger 477913 to L-lactate. Microelectrodes filled with this exchanger showed responses to changes in L-lactate concentration in chloride-free solutions. In these experiments L-lactate replaced gluconate in equimolar amounts. Microelectrodes filled with this exchanger were used to qualitatively detect changes in intracellular anion in chloride-depleted frog sartorius muscle fibres during exposure to extracellular concentrations of L-lactate. The increase in intracellular anion concentration is consistent with the movement of L-lactate into the cell. This microelectrode enables one to qualitatively monitor changes in intracellular L-lactate in chloride-free experiments without incorporating selectivity coefficients.  相似文献   

13.
Niflumic acid is a noncompetitive inhibitor of chloride exchange, which binds to a site different from the transport or modifier sites. When the internal Cl- concentration is raised, at constant extracellular Cl- , the inhibitory potency of niflumic acid increases. This effect cannot be attributed to changes in membrane potential, but rather it suggests that niflumic acid binds to the anion exchange protein band 3 only when the transport site faces outward. When the chloride gradient is reversed, with Clo greater than Cli , the inhibitory potency of niflumic acid decreases greatly, which indicates that the affinity of niflumic acid for band 3 with the transport site facing inward is almost 50 times less than when the transport site faces outward. Experiments in which Cli = Clo show no significant change in the inhibition by niflumic acid when Cl- is lowered from 150 to 10 mM. These data suggest that the intrinsic dissociation constants for Cl- at the two sides of the membrane are nearly equal. Thus, the chloride- loaded transport sites have an asymmetric orientation like that of the unloaded transport sites, with approximately 15 times more sites facing the inside than the outside. The asymmetry reflects an approximately 1.5 kcal/mol free energy difference between the inward-facing and outward-facing chloride-loaded forms of band 3. High concentrations of chloride (with Cli = Clo), which partially saturate the modifier site, have no effect on niflumic acid inhibition, which indicates that chloride binds equally well to the modifier site regardless of the orientation of the transport site.  相似文献   

14.
P2X7 receptors (P2X7Rs) are nonselective cation channels that are opened by the binding of extracellular ATP and are involved in the modulation of epithelial secretion, inflammation and nociception. Here, we investigated the effect of extracellular anions on channel gating and permeation of human P2X7Rs (hP2X7Rs) expressed in Xenopus laevis oocytes. Two-microelectrode voltage-clamp recordings showed that ATP-induced hP2X7R-mediated currents increased when extracellular chloride was substituted by the organic anions glutamate or aspartate and decreased when chloride was replaced by the inorganic anions nitrate, sulfate or iodide. ATP concentration-response comparisons revealed that substitution of chloride by glutamate decreased agonist efficacy, while substitution by iodide increased agonist efficacy at high ATP concentrations. Meanwhile, the ATP potency remained unchanged. Activation of the hP2X7R at low ATP concentrations via the high-affinity ATP effector site was not affected by the replacement of chloride by glutamate or iodide. To analyze the anion effect on the hP2X7R at the single-molecule level, we performed single-channel current measurements using the patch-clamp technique in the outside-out configuration. Chloride substitution did not affect the single-channel conductance, but the probability that the P2X7R channel was open increased when chloride was replaced by glutamate and decreased when chloride was replaced by iodide. This effect was due to an influence of the anions on the mean closed times of the hP2X7R channel. We conclude that hP2X7R channels are not anion-permeable in physiological Na+-based media and that external anions allosterically affect ion channel opening in the fully ATP4-liganded P2X7R through an extracellular anion binding site.  相似文献   

15.
The CFTR contributes to Cl? and HCO?? transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl? and HCO?? in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl? and HCO?? regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO?? than when it contains Cl?. This difference appears to reflect differences in the ability of extracellular HCO?? and Cl? to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO?? concentrations and membrane potentials and can result in up to ~50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.  相似文献   

16.
Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder   总被引:7,自引:5,他引:2       下载免费PDF全文
The hypothesis of Cl-/HCO3- exchange across the apical membrane of the epithelial cells of Necturus gallbladder was tested by means of measurements of extracellular pH (pHo), intracellular pH (pHi), and Cl- activity (alpha Cli) with ion-sensitive microelectrodes. Luminal pH changes were measured after stopping mucosal superfusion with a solution of low buffering power. Under control conditions, the luminal solution acidifies when superfusion is stopped. Shortly after addition of the Na+/H+ exchange inhibitor amiloride (10(-3) M) to the superfusate, alkalinization was observed. During prolonged (10 min) exposure to amiloride, no significant pHo change occurred. Shortly after amiloride removal, luminal acidification increased, returning to control rates in 10 min. The absence of Na+ in the superfusate (TMA+ substitution) caused changes in the same direction, but they were larger than those observed with amiloride. Removal of Cl- (cyclamate or sulfate substitution) caused a short-lived increase in the rate of luminal acidification, followed by a return to control values (10-30 min). Upon re-exposure to Cl-, there was a transient reduction of luminal acidification. The initial increase in acidification produced by Cl- removal was partially inhibited by SITS (0.5 mM). The pHi increased rapidly and reversibly when the Cl- concentration of the mucosal bathing solution was reduced to nominally 0 mM. The pHi changes were larger in 10 mM HCO3-Ringer's than in 1 mM HEPES-Ringer's, which suggests that HCO3- is transported in exchange for Cl-. In both HEPES- and HCO3-Ringer's, SITS inhibited the pHi changes. Finally, intracellular acidification or alkalinization (partial replacement of NaCl with sodium propionate or ammonium chloride, respectively) caused a reversible decrease or increase of alpha Cli. These results support the hypothesis of apical membrane Cl-/HCO3- exchange, which can be dissociated from Na+/H+ exchange and operates under control conditions. The coexistence at the apical membrane of Na+/H+ and Cl-/HCO3- antiports suggests that NaCl entry can occur through these transporters.  相似文献   

17.
This paper describes the effect of tributyltin (TBT) on the inorganic anion permeability of lipid bilayers. When this compound is added in micromolar concentrations to one or both sides of a phosphatidyl ethanolamine (PE) membrane formed in 0.1 M NaCl or KCl (pH 7), there is no change in the electrical conductance. Under these circumstances, the Cl self-exchange flux measured with 36Cl (MCl) increases from a value of approximately 10(-12) mol.cm-2.s-1, to approximately 10(-8) mol.cm-2.s-1. It was further found that the relation between chloride flux and [TBT] and [Cl] can be described as: MCl = B[TBT] [Cl]. When chloride was replaced by an equimolar concentration of different univalent anions in the trans compartment, the heteroexchange flux of chloride followed the sequence: I greater than Br greater than Cl greater than F greater than NO3. Under all experimental conditions tested, the chloride flux was always more than 10(3) times the maximum flux predicted from the value of the membrane conductance, and at least 100 times higher than the expected fluxes of ion pairs (TBT-Cl) diffusing across the unstirred layers. Thus, the mechanism by which tributyltin increases anion permeability in bilayers seems to be that of an obligatory exchange diffusion, with the reaction between tributyltin and the halides occurring at the membrane surface. Measurements of interfacial potentials indicate that tributyltin chloride lowers the positive intrinsic dipole potential of PE membranes by approximately 70 mV (at a TBT concentration of 30 microM) without substantial alteration of other parameters of the bilayer. The estimated adsorption coefficient of TBT-Cl was found to be 3 x 10(-4) cm.  相似文献   

18.
The intracellular chloride activity (aiCl), measured with Cl-selective microelectrodes on stimulated rabbit papillary muscles (1 Hz) incubated in serum, was 7.2 +/- 2.2 mM (48 measurements). Under the same condition, on the quiescent muscle, aiCl was 7.5 +/- 2.8 mM (45 measurements). The membrane potential of quiescent papillary muscles and diastolic potential of stimulated papillary muscles were -79.0 +/- 0.7 (50 measurements) and -83.5 +/- 0.5 mV (50 measurements), respectively. The experimental conditions were chosen to reproduce the in vivo conditions where the Cl equilibrium potential is close to the membrane potential or to the diastolic potential. After correcting for cytoplasmic interference (4 mM) on the aiCl measurements, the Cl equilibrium potential (ECl) was -84 mV. In conclusion, the Cl distribution in cardiac cells bathed in serum is passive as for in vivo cardiac cells.  相似文献   

19.
The exchange of anions across the erythrocyte membrane has been studied using 31P nuclear magnetic resonance (NMR) to monitor inorganic phosphate influx and 35Cl NMR to monitor chloride ion efflux. The 31P NMR resonances for intracellular Pi and extracellular Pi could be observed separately by adjusting the initial extracellular pH to 6.4, while the intracellular pH was 7.3. The 35Cl NMR resonance for intracellular Cl- was so broad as to be virtually undetectable (line width greater than 200 Hz), while that of extracellular Cl-is relatively narrow (line width of about 30 Hz). The transports of Pi and Cl-were both totally inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate, a potent inhibitor of the band 3 protein. Since the 31P resonance of Pi varies with pH, intra- and extracellular pH changes could also be determined during anion transport. The extracellular pH rose and intracellular pH fell during anion transport, consistent with the protonated monoanionic H2PO4-form of Pi being transported into the erythrocyte rather than the deprotonated dianionic HPO24-form. The rates of Cl-efflux and Pi influx were determined quantitatively and were found to be in close agreement with values determined by isotope measurements. The Cl-efflux was found to coincide with the influx of the monoanionic H2PO4-form of Pi.  相似文献   

20.
The variety of methods used to identify the structural determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator Cl(-) channel has made it difficult to assemble the data into a coherent framework that describes the three-dimensional structure of the pore. Here, we compare the relative importance of sites previously studied and identify new sites that contribute strongly to anion selectivity. We studied Cl(-) and substitute anions in oocytes expressing wild-type cystic fibrosis transmembrane conductance regulator or 12-pore-domain mutants to determine relative permeability and relative conductance for 9 monovalent anions and 1 divalent anion. The data indicate that the region of strong discrimination resides between T338 and S341 in transmembrane 6, where mutations affected selectivity between Cl(-) and both large and small anions. Mutations further toward the extracellular end of the pore only strongly affected selectivity between Cl(-) and larger anions. Only mutations at S341 affected selectivity between monovalent and divalent anions. The data are consistent with a narrowing of the pore between the extracellular end and a constriction near the middle of the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号