首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
In this paper, we present a study about the influence of the porphyrin metal center and meso ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca2+. Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle.  相似文献   

2.
Reductive nitrosylation of the water-soluble iron derivatives of the cationic Fe(III)(TMPyP) and anionic Fe(III)(TPPS) porphyrins [where TMPyP=tetra-meso-(4-N-methylpyridiniumyl)porphinate and TPPS=tetra-meso-(4-sulfonatophenyl)porphinate] by the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) was studied using optical absorption spectroscopy and electron paramagnetic resonance. Nitrosylation rates were obtained, the reaction was found to be first order in the SNAP concentration and the stoichiometry of the reaction was one to one. The similarity between the obtained second-order rate constants for both porphyrins, k(TMPyP)=0.84 x 10(3)M(-1)s(-1) and k(TPPS)=0.97 x 10(3)M(-1)s(-1), suggested that the reaction mechanism is approximately independent of the nature of the porphyrin meso-substituents. A mechanism was proposed involving the hydrolysis of SNAP by an out of plane liganded H(2)O yielding the sulfenic acid of N-acetylpenicillamine and the transfer of NO(-) to Fe(III). The EPR (electron paramagnetic resonance) spectra of the SNAP- and gaseous NO-treated porphyrins were obtained and compared. The difference between the spectra of the cationic and anionic porphyrins indicates different local symmetry and Fe-N-O bond angle. SNAP-treatment produced much more resolved hyperfine structures than gaseous NO-treatment.  相似文献   

3.
Radical production during the photolysis of deaerated aqueous alkaline solutions (pH 11) of some water-soluble porphyrins was investigated. Metal-free and metallo complexes of tetrakis (4-N-methylpyridyl)porphyrin (TMPyP) and tetra (4-sulphonatophenyl)porphyrin (TPPS4) were studied. Evidence for the formation of OH radicals during photolysis at 615, 545, 435, 408 and 335 nm of Fe(III) TPPS4 is presented. Fe(III) TMPyP, Mn(III) TPPS4 and Mn(III) TMPyP also gave OH radicals but only during photolysis at 335 nm. The method of spin trapping with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and 4-pyridyl-1-oxide-N-tert-butylnitrone (POBN) combined with e.s.r. was used for the detection of OH, H and hydrated electrons. With the spin trap DMPO, photolysis generated DMPO-OH adducts under certain conditions but no DMPO-H adducts could be observed. With POBN, no POBN-H adducts were found. The formation of OH was confirmed by studying competition reactions for OH between the spin traps and OH scavengers (formate, isopropanol) and the concomitant formation of the CO-2 adduct and the (CH3)2COH adduct with both DMPO and POBN. The photochemical generation of OH radicals was pH dependent; at pH 7.5 no OH radicals could be detected. Photolysis (615-335 nm) of dicyanocomplexes of the Fe(III) porphyrins did not produce OH radicals. When corresponding Cu(II), Ni(II), Zn(II) and metal-free porphyrins were photolysed at 615 and 335 nm, no OH radicals could be spin trapped. These results tend to associate the well-known phenomenon of photoreduction of Fe(III) and Mn(III) porphyrins with the formation of OH radicals. This process is described mainly as the photoreduction of the metal ion by the ligand-bound hydroxyl ion via an intramolecular process.  相似文献   

4.
The nuclear transport pathways of the photosensitizers meso-tetra(4-sulfonatophenyl)porphyrin (TPPS4) and meso-tetra(4-N-methylpyridyl)porphyrin (TMPyP) during photosensitization and oxidative stress were characterized in CT-26 murine colon carcinoma cells using fluorescence microscopy and multi-pixel spectral imaging. Prior to irradiation, TPPS4 and TMPyP localized mainly in the lysosomes, while irradiation or H2O2 treatment induced a relocalization into the nucleus and nucleoli. Flow cytometry analysis of isolated nuclei from the treated cells showed an increase in nuclear fluorescence accompanying the relocalization. Isolation and separation of the nuclear proteins according to molecular weight was performed using a sephadex G-100 column. The protein fractions exhibiting high fluorescence were separated by high performance liquid chromatography. Five major classes of proteins with a retention time of 1, 7, 11, 12 and 15 min were obtained. Each photosensitizer was associated with a distinct class of proteins. While TPPS4 fluorescence was detected in the protein fraction with a retention time of 11 min, TMPyP fluorescence was associated with a protein fraction having a retention time of 7 min. We conclude that although oxidative stress triggers entry into the nucleus of both TPPS4 and TMPyP, each sensitizer uses a distinct transport mechanism based on its chemical properties.  相似文献   

5.
The enzymatic system mainly responsible for the reduction of labile iron ions in mammalian cells is still unknown. Using isolated organelles of the rat liver, i.e. mitochondria, microsomes, nuclei and the cytosol, we here demonstrate that Fe(III), added as Fe(III)-ATP complex, is predominantly reduced by an NADH-dependent enzyme system associated with mitochondria (65% of the overall enzymatic Fe(III) reduction capacity within liver cells). Microsomes showed a significantly smaller Fe(III) reduction capacity, whereas the cytosol and nuclei hardly reduced Fe(III). Studying the mitochondrial iron reduction, this NADH-dependent process was not mediated by superoxide, ascorbic acid, or NADH itself, excluding low-molecular-weight reductants. No evidence was found for the involvement of complex I and III of the respiratory chain. Submitochondrial preparations revealed the highest specific activity reducing Fe(III) in the outer membrane fraction. In conclusion, an NADH-dependent mitochondrial enzyme system, most likely the NADH-cytochrome c reductase system, located at the outer membrane, should decisively contribute to the enzymatic reduction of labile iron within liver cells, especially under pathological conditions.  相似文献   

6.
《Luminescence》2003,18(3):162-172
The reaction of iron(III) tetrakis‐5,10,15,20‐(N‐methyl‐4‐pyridyl)porphyrin (Fe(III)TMPyP) with hydrogen peroxide (H2O2) and the catalytic activity of the reaction intermediates on the luminescent peroxidation of luminol in aqueous solution were studied by using a double‐mixing stopped‐flow system. The observed luminescence intensities showed biphasic decay depending on the conditions. The initial flashlight decayed within <1 s followed by a sustained emission for more than 30 s. Computer deconvolution of the time‐resolved absorption spectra under the same conditions revealed that the initial flashlight appeared during the formation of the oxo–iron(IV) porphyrin, TMPyPFe(IV) = O, which is responsible for the sustained emission. The absorption spectra 0.0–0.5 s did not reproduce well by a simple combination of the two spectra of Fe(III)TMPyP and TMPyPFe(IV) = O, indicating that transient species was formed at the initial stage. Addition of uric acid (UA) caused a significant delay in the initiation of the luminol emission as well as in the formation of the TMPyPFe(IV) = O. Both of them were completely diminished in the presence of UA equimolar with H2O2, while mannitol had no effect at all. The delay of the light emission as well as the appearance of TMPyPFe(IV) = O was directly proportional to the [UA]0 but other kinetic profiles were not changed significantly. Based on these observations and the kinetic analysis, we confirmed the involvement of the oxo–iron(IV) porphyrin radical cation, (TMPyP)·+Fe(IV) = O, as an obligatory intermediate in the rate‐determining step of the overall reaction, Fe(III)TMPyP + H2O2 → TMPyPFe(IV) = O, with a rate constant of k = 4.3 × 104/mol/L/s. The rate constants for the reaction between the (TMPyP)·+Fe(IV) = O and luminol, and between the TMPyPFe(IV) = O and luminol were estimated to be 3.6 × 106/mol/L/s and 1.31 × 104/mol/L/s, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The relevance of porphyrins as therapeutic drugs targeted to mitochondria has been widely recognized. In this work, we studied the action of meso-tetrakis porphyrins (TMPyP) on respiring rat liver mitochondria. Mn(III)TMPyP exerted a protective effect against lipid peroxidation induced by Fe(II) or the azo initiator 4,4-azobis(4-cyanopentanoic acid) (ABCPA), which partition in the hydrophobic phospholipid moiety, and 2,2-azobis(2-amidinepropane)dihydrochloride (ABAP), which partitions in the aqueous phase. In contrast, Fe(III)TMPyP itself induced an intense lipid peroxidation, accompanied by mitochondrial permeability transition. Both mesoporphyrins studied promoted a release of mitochondrial state-4 respiration, in the concentration range of 1.0–20 M. Based on the relative effects of Mn(III)TMPyP against ABAP and ABCPA-induced lipid peroxidation, we believe that meso-tetrakis porphyrins must concentrate preferably at membrane–water interfaces.  相似文献   

8.
《Luminescence》2003,18(5):259-267
High‐valent oxo‐iron(IV) species are commonly proposed as the key intermediates in the catalytic mechanisms of iron enzymes. Water‐soluble iron(III) tetrakis‐5,10,15,20‐(N‐methyl‐4‐pyridyl)porphyrin (Fe(III)TMPyP) has been used as a model of heme‐enzyme to catalyse the hydrogen peroxide (H2O2) oxidation of various organic compounds. However, the mechanism of the reaction of Fe(III)TMPyP with H2O2 has not been fully established. In this study, we have explored the kinetic simulation of the reaction of Fe(III)TMPyP with H2O2 and of the catalytic reactivity of FeTMPyP in the luminescent peroxidation of luminol. According to the mechanism that has been established in this work, Fe(III)TMPyP is oxidized by H2O2 to produce (TMPyP)·+Fe(IV)=O (k1 = 4.5 × 104/mol/L/s) as a precursor of TMPyPFe(IV)=O. The intermediate, (TMPyP)·+Fe(IV)=O, represented nearly 2% of Fe(III)TMPyP but it does not accumulate in suf?cient concentration to be detected because its decay rate is too fast. Kinetic simulations showed that the proposed scheme is capable of reproducing the observed time courses of FeTMPyP in various oxidation states and the decay pro?les of the luminol chemiluminescence. It also shows that (TMPyP)·+Fe(IV)=O is 100 times more reactive than TMPyPFe(IV)=O in most of the reactions. These two species are responsible for the initial sharp and the sustained luminol emissions, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The interaction of the rubella virus (RV) capsid (C) protein and the mitochondrial p32 protein is believed to participate in virus replication. In this study, the physiological significance of the association of RV with mitochondria was investigated by silencing p32 through RNA interference. It was demonstrated that downregulation of p32 interferes with microtubule-directed redistribution of mitochondria in RV-infected cells. However, the association of the viral C protein with mitochondria was not affected. When cell lines either pretreated with respiratory chain inhibitors or cultivated under (mild) hypoxic conditions were infected with RV, viral replication was reduced in a time-dependent fashion. Additionally, RV infection induces increased activity of mitochondrial electron transport chain complex III, which was associated with an increase in the mitochondrial membrane potential. These effects are outstanding among the examples of mitochondrial alterations caused by viruses. In contrast to the preferential localization of p32 to the mitochondrial matrix in most cell lines, RV-permissive cell lines were characterized by an almost exclusive membrane association of p32. Conceivably, this contributes to p32 function(s) during RV replication. The data presented suggest that p32 fulfills an essential function for RV replication in directing trafficking of mitochondria near sites of viral replication to meet the energy demands of the virus.  相似文献   

10.
Glutamate is an excitotoxin responsible for causing neuronal damage associated with mitochondria dysfunction. We have analyzed the relationship between the mitochondrial respiratory rate, the membrane potential (delta psi) and the activity of mitochondrial complexes in retinal cells in culture, used as neuronal models. Glutamate (10 microM-10 mM) dose-dependently decreased the O2 consumption and the membrane potential. A linear correlation was found between these parameters, suggesting that the mitochondrial respiratory function was affected. Exposure to glutamate (100 microM) for 10 min, in the absence of Mg2+, inhibited the activity of complex I (26.3%), complexes II/III (22.2%) and complex IV (26.7%). MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate), a non-competitive antagonist of the NMDA (N-methyl-D-aspartate) receptors, completely reversed the effect exerted by 100 microM glutamate at the level of complexes I, II/III and IV. These results suggest that NMDA receptor-mediated inhibition of mitochondrial respiratory chain complexes may be responsible for the alteration in the respiratory rate of chick retinal cells submitted to glutamate.  相似文献   

11.
We synthesized a water soluble Fe(III)-salen complex and investigated its biochemical effects on DNA in vitro and on cultured human cells. We showed that Fe(III)-salen produces free radicals in the presence of reducing agent dithiothreitol (DTT) and induces DNA damage in vitro. Interestingly, upon treatment with Fe(III)-salen at concentration as low as 10microM, HEK293 human cells showed morphological changes, nuclear fragmentation, and nuclear condensation that are typical features of apoptotic cell death. The cytotoxicity measurement showed that IC(50) of Fe(III)-salen is 2.0microM for HEK293 cells. Furthermore, treatment with Fe(III)-salen resulted in translocation of cytochrome c from mitochondria to cytosol affecting mitochondrial membrane permeability. Our results demonstrated that Fe(III)-salen not only damages DNA in vitro, but also induces apoptosis in human cells via mitochondrial pathway.  相似文献   

12.
1. When mitochondria are stirred in air the rate of anion conductivity increases, this effect being enhanced by the addition of respiratory substrate. 2. This effect is reversible if the mitochondria are stored for a period of time under N2. 3. The aeration-induced increase in mitochondrial anion conductivity can also be prevented by the addition of respiratory inhibitors rotenone and antimycin A, as well as by 30 microM-cyanide. 4. A decrease in this aeration-induced anion conductivity can also be observed upon the addition of the uncouplers carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (2 microM) and 2,4-dinitrophenol (100 microM). 5. Simultaneous measurements of mitochondrial anion conductivity and membrane potential show a relationship between the level of membrane potential and anion conductivity. 6. It is suggested that the level of membrane potential is either directly or indirectly responsible for the level of mitochondrial anion conductivity.  相似文献   

13.
The induced chirality of achiral binary aggregates of meso-tetrakis(4-N-methylpyridyl)porphyrine (TMPyP) and meso-tetrakis(4-sulfonatophenyl)porphyrine (TPPS) on a deoxyribonucleic acid (DNA) matrix was investigated. Although the negatively charged TPPS did not show induced chirality in DNA solution due to the electrostatic repulsion, induced chirality was obtained through the addition of a positively charged TMPyP. It was confirmed that the induced chirality was due to the binary complex formation between TPPS and TMPyP on the DNA matrix. Moreover, the induced chirality depended on the relative molar ratio of TPPS to TMPyP (r) and the binding modes of the complex to DNA. When r<1, induced circular dichroism (CD) spectrum of the ternary complex was similar to that of intercalated TMPyP into DNA. For r=1, the induced CD spectrum showed a reversed biphasic signal due to the complex of TMPyP and TPPS stacking along the DNA surface. At a higher r value (>1), there was an induced CD signal at 482 nm attributed to a lateral shifted arrangement of heteroaggregate of TPPS and TMPyP on DNA matrix where TMPyP acted as a spacer to mediate the growth of heteroaggregates. Increasing the concentration of sodium chloride in the solution would favor the formation of the lateral shifted arrangement of heteroaggregate of TPPS and TMPyP. The resonance light scattering (RLS) spectra confirmed the above results. Analysis of the CD spectral changes in DNA conformation showed that during the binary complex formation of TPPS and TMPyP, the intercalated TMPyP could be 'pulled out' from the base pairs of DNA, which might be useful in gene therapy. A model was proposed to account for these observations.  相似文献   

14.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

15.
Mitochondria are the centers of the cellular iron metabolism. Iron utilization by mitochondria is deeply related to their respiratory chain activity. We isolated mitochondria from Saccharomyces cerevisiae and examined Fe(III) reduction induced by a respiratory substrate (NADH or succinate), using a Fe(II)-specific chelator (bathophenanthroline disulfonate). In the presence of either 50 μM NADH or 5 mM succinate, the amount of reduced Fe(III) was linearly correlated with the amount of mitochondria. As the concentration of the substrate increased, the rate of the mitochondrial Fe(III) reduction reached a plateau. In the presence of 1 mM ADP or 1 mM ATP, the extramitochondrial Fe(III) reduction was repressed when succinate was used as the substrate, but not when NADH was used. ADP had an inhibitory effect even under low concentration of succinate, suggesting that ADP and ATP acted in a manner of both competitive and uncompetitive inhibition.  相似文献   

16.
The equilibrium behavior of cationic iron(III) meso-tetrakis(4-N-methyl-pyridiniumyl) porphyrin, Fe(III)TMPyP, in aqueous solution was studied as a function of pH by optical absorption, EPR and (1)H NMR spectroscopies. The presence of several Fe(III)TMPyP species in solution was unequivocally demonstrated: monomeric porphyrin species (a monoaqueous five-coordinated complex, a diaaqueous six-coordinated complex and a monoaqueous-hydroxo six-coordinated complex), a micro-oxo dimer and a bis-hydroxo complex. The addition of salt to the porphyrin solution leads to a simplification of the equilibrium as a function of pH. In this case, only three species were observed in solution: a monomeric porphyrin species, a micro-oxo dimer and a bis-hydroxo complex. Optical absorption, EPR and (1)H NMR spectra contributed to the characterization of these species. Four critical pH values (pK) for Fe(III)TMPyP were obtained in pure buffer and only three pK values were observed in the presence of NaCl. The addition of salt favors the presence of the dimeric species in solution and simplifies the equilibrium in the acidic pH range.  相似文献   

17.
The utilization of iron and its complexes by mammalian mitochondria   总被引:5,自引:2,他引:3       下载免费PDF全文
Sonicated mitochondria catalyse the reduction of ferric salts, and the subsequent incorporation of Fe(2+) into haem, when provided with a reducing substrate such as succinate or NADH. The rate of haem synthesis was low under aerobic conditions and, after a short lag period, accelerated once anaerobic conditions were achieved; it was insensitive to antimycin A. The lag period was decreased by preincubating the mitochondria with NADH and Fe(3+). Newly formed Fe(2+) was autoxidized rapidly and the consequent O(2) uptake was measured with an oxygen electrode to determine the rate of enzymic formation of Fe(2+) from FeCl(3); this reaction was rapid in sonicated mitochondria provided with NADH or succinate and was insensitive to antimycin A. The reaction was very slow in intact mitochondria, suggesting a permeability barrier to Fe(3+) ions. This system was used to test the permeability of the mitochondrial membrane to various iron complexes of biological importance. Of the compounds tested only ferrioxamine G appeared to penetrate readily and the iron of this complex was reduced when intact mitochondria were supplied with succinate or NADH-linked substrates. The reduction was insensitive to rotenone or antimycin A. Both ferrioxamine G and ferrioxamine B were, however, reduced by particles. The membrane fraction of sonicated mitochondria was necessary for the reduction. The rate of ferrioxamine B reduction by sonicated mitochondria was measured by a dual-wavelength spectrophotometric assay and was found to be stimulated in conditions where the Fe(2+) produced was utilized for haem synthesis. The addition of FeCl(3) to anaerobic particles caused an oxidation of cytochrome b when this region of the respiratory chain was isolated by treatment with rotenone and antimycin A. These results suggest that the reduction of ferric iron and its complexes occurs inside the inner mitochondrial membrane in proximity to ferrochelatase. Possible sites for this reduction are the flavoproteins, succinate and NADH dehydrogenase.  相似文献   

18.
Interactions of the water soluble Fe(III)- and Zn(II)-tetra(4-sulfonatophenyl) porphyrins, FeTPPS(4) and ZnTPPS(4), with ionic and nonionic micelles in aqueous solutions have been studied by optical absorption, fluorescence, resonance light-scattering (RLS), and 1H NMR spectroscopies. The presence of three different species of both Fe(III)- and Zn(II)TPPS(4) in cationic cetyltrimethylammonium chloride (CTAC) solution has been unequivocally demonstrated: free metalloporphyrin monomers or dimers (pH 9), metalloporphyrin monomers or aggregates (possibly micro-oxo dimers) bound to the micelles, and nonmicellar metalloporphyrin/surfactant aggregates. The surfactant:metalloporphyrin ratio for the maximum nonmicellar aggregate formation is around 5-8 for Fe(III)TPPS(4) both at pH 4.0 and 9.0; for Zn(II)TPPS(4) this ratio is 8, and the spectral changes are practically independent of pH. In the case of zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and non-ionic polyoxyethylene lauryl ether (Brij-35) and t-octylphenoxypolyethoxyetanol (Triton X-100), the nonmicellar aggregates were not observed in the pH range from 2.0 to 12.0. Binding constants were calculated from optical absorption data and are of the order of 10(4) M(-1) for both CTAC and HPS, values which are similar to those previously obtained for the porphyrin in the free base form. For Brij-35 and Triton X-100 the binding constant for ZnTPPS(4) at pH 4.0 is a factor of 3-5 lower than those for CTAC and HPS, while in the case of FeTPPS(4) they are two orders of magnitude lower. Our data show that solubilization of ZnTPPS(4) within nonpolar regions of micelles is determined, in general, by nonspecific hydrophobic interactions, yet it is modulated by electrostatic factors. In the case of FeTPPS(4), the electrostatic factor seems to be more relevant. NMR data indicated that Fe(III)TPPS(4) is bound to the micelles predominantly as a monomer at pH 4.0, and at pH 9.0 the bound aggregated form (possibly micro-oxo dimers) remains. The metalloporphyrins were incorporated into the micelles near the terminal part of their hydrocarbon chains, as evidenced by a strong upfield shift of the corresponding peaks of the surfactants.  相似文献   

19.
Schild L  Plumeyer F  Reiser G 《The FEBS journal》2005,272(22):5844-5852
Injury of liver by ischaemia crucially involves mitochondrial damage. The role of Ca(2+) in mitochondrial damage is still unclear. We investigated the effect of low micromolar Ca(2+) concentrations on respiration, membrane permeability, and antioxidative defence in liver mitochondria exposed to hypoxia/reoxygenation. Hypoxia/reoxygenation caused decrease in state 3 respiration and in the respiratory control ratio. Liver mitochondria were almost completely protected at about 2 microM Ca(2+). Below and above 2 microM Ca(2+), mitochondrial function was deteriorated, as indicated by the decrease in respiratory control ratio. Above 2 microM Ca(2+), the mitochondrial membrane was permeabilized, as demonstrated by the sensitivity of state 3 respiration to NADH. Below 2 microM Ca(2+), the nitric oxide synthase inhibitor nitro-l-arginine methylester had a protective effect. The activities of the manganese superoxide dismutase and glutathione peroxidase after hypoxia showed maximal values at about 2 microM Ca(2+). We conclude that Ca(2+) exerts a protective effect on mitochondria within a narrow concentration window, by increasing the antioxidative defence.  相似文献   

20.
Nitroxyl anion (NO-), and/or its conjugate acid, HNO, may be formed in the cellular milieu by several routes under both physiological and pathophysiological conditions. Since experimental evidence suggests that certain reactive nitrogen oxide species can contribute significantly to cerebral ischemic injury, we investigated the neurotoxic potential of HNO/NO- using Angeli's salt (AS), a spontaneous HNO/NO(-)-generating compound. Exposure to AS resulted in a time- and concentration-dependent increase in neural cell death that progressed markedly following the initial exposure. Coadministration of the donor with Tempol (1 mM), a one-electron oxidant that converts NO- to NO, prevented its toxic effect, as did the concomitant addition of Fe(III)TPPS. Media containing various chelators, catalase, Cu/Zn superoxide dismutase, or carboxy-PTIO did not ameliorate AS-mediated neurotoxicity, ruling out the involvement of transition metal complexes, H2O2, O2-, and NO, respectively. A concentration-dependent increase in supernatant protein 3-nitrotyrosine immunoreactivity was observed when cultures were exposed to AS under aerobic conditions, an effect lost in the absence of oxygen. A bell-shaped curve for augmented AS-mediated nitration was observed with increasing Fe(III)TPPS concentration, which contrasted with its linear effect on abating cytotoxicity. Finally, addition of glutamate receptor antagonists, MK-801 (10 microM) and CNQX (30 microM) to the cultures abrogated toxicity when given during, but not following, AS exposure; as did pretreatment with the exocytosis inhibitor, tetanus toxin (300 ng/ml). Taken together, our data suggest that under aerobic conditions, AS toxicity is initiated via HNO/NO- but progresses via secondary excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号