首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pestiviruses prevent alpha/beta interferon (IFN-alpha/beta) production by promoting proteasomal degradation of interferon regulatory factor 3 (IRF3) by means of the viral N(pro) nonstructural protein. N(pro) is also an autoprotease, and its amino-terminal coding sequence is involved in translation initiation. We previously showed with classical swine fever virus (CSFV) that deletion of the entire N(pro) gene resulted in attenuation in pigs. In order to elaborate on the role of the N(pro)-mediated IRF3 degradation in classical swine fever pathogenesis, we searched for minimal amino acid substitutions in N(pro) that would specifically abrogate this function. Our mutational analyses showed that degradation of IRF3 and autoprotease activity are two independent but structurally overlapping functions of N(pro). We describe two mutations in N(pro) that eliminate N(pro)-mediated IRF3 degradation without affecting the autoprotease activity. We also show that the conserved standard sequence at these particular positions is essential for N(pro) to interact with IRF3. Surprisingly, when these two mutations are introduced independently in the backbones of highly and moderately virulent CSFV, the resulting viruses are not attenuated, or are only partially attenuated, in 8- to 10-week-old pigs. This contrasts with the fact that these mutant viruses have lost the capacity to degrade IRF3 and to prevent IFN-alpha/beta induction in porcine cell lines and monocyte-derived dendritic cells. Taken together, these results demonstrate that contrary to previous assumptions and to the case for other viral systems, impairment of IRF3-dependent IFN-alpha/beta induction is not a prerequisite for CSFV virulence.  相似文献   

3.
4.
5.
通过基因组定量研究猪瘟病毒在细胞中的增殖特性   总被引:1,自引:0,他引:1  
应用间接免疫荧光、Real-time PCR和病毒感染滴度(TCID50)测定技术,分别从病毒抗原、病毒基因组RNA复制水平和病毒感染滴度变化3个方面,研究了猪瘟病毒(CSFV)在PK-15细胞中增殖的特点,用猪瘟病毒石门株感染96孔板培养的细胞,1×102个TCID50/孔,间接免疫荧光检测结果显示感染后8h能检测到被荧光抗体染色的感染细胞,随感染时间的延长,出现荧光的细胞数量逐渐增多,在感染后72h,几乎所有细胞均能出现荧光。Real-time PCR结果显示在细胞感染初期的8~24h,病毒的基因组RNA复制呈加速趋势,其拷贝数在感染后72h达到高峰。此外,在感染后8h能检测到病毒基因组负链RNA转录,不过负链RNA在病毒增殖过程中维持在较低的水平。TCID50测定结果表明CSFV的感染滴度增加趋势与基因组类似,在病毒感染8h后能检测到具有感染性的子代病毒,感染滴度在8~20h之间逐渐增长,24~48h之间增长速度稍减慢,在感染后48~52h达到高峰,能在72h之内维持较高的感染滴度。  相似文献   

6.
7.
反向遗传学技术在猪瘟病毒研究中的应用   总被引:1,自引:0,他引:1  
刘大飞  孙元  仇华吉 《生物工程学报》2009,25(10):1441-1448
猪瘟目前在许多国家流行并对养猪业造成巨大损失。虽然常规疫苗(如中国猪瘟兔化弱毒疫苗,即C株)在猪瘟防控中发挥巨大作用,但近年来在猪瘟防控中出现的新情况,如非典型感染、持续性感染及免疫失败等;同时目前世界上许多国家正开展的猪瘟扑灭计划使得弱毒疫苗的应用受到很大限制。因此,加强猪瘟病毒在致病机理、传播机制等方面的研究以及加快新型猪瘟疫苗的开发是当务之急。近年来,反向遗传学技术的发展为猪瘟病毒基因功能研究和疫苗制备方面开辟了新思路。以下回顾了反向遗传操作技术在猪瘟病毒基因功能研究与标记疫苗株构建方面的研究进展,同时提出了该领域目前面临的问题,并对其未来发展方向进行了展望。  相似文献   

8.
9.
Classical swine fever virus (CSFV) is the causative agent of swine fever, which represents an economically important disease in hogs. We previously made a prediction about the recognition sites of replication initiation of CSFV by using the information content method, and it was predicted that the 21 nucleotides located at 3' end of the CSFV genome 3'UTR were essential to CSFV replication. In this paper, we experimentally studied these 21 nucleotides by site-directed mutagenesis. It was found that the 3'UTRs with the 21 nucleotides had the function of initiating RNA synthesis, while the 3'UTRs without the 21 nucleotides did not. The 21 nucleotides alone, without the rest of 3'UTR, were able to initiate RNA synthesis, though with a slump. It was demonstrated that the 21 nucleotides were essential to the replication of CSFV genome. The other part of 3'UTR was also required for sufficient RNA synthesis. It is highly likely that the 21 nucleotides were the necessary site for the CSFV genome replication initiation, and that the elements required for sufficient RNA synthesis were in the other part of 3'UTR. It was assumed that the CSFV replicase bound to the site and initiated the replication of the CSFV genome. In the 21 nucleotides, it was found that the mutation of position 216 and destruction of the 3' terminus in the 3'UTR precluded initiation of RNA synthesis, that the mutation of position 212 did not affect the capacity for initiation of RNA synthesis but attenuated the synthesis of RNA. Among the four mutants of 3'UTR at position 219, three produced the 3'UTR without initiation of RNA synthesis, and the other one produced the 3'UTR with initiation of less RNA synthesis. Therefore, it could be concluded that T216 was the most important while T212 was the least important, and that G219 and C228 were also important for RNA synthesis. The normal base component within the 21 nucleotides was essential to sufficient RNA synthesis.  相似文献   

10.
Endothelial cells are the main target of classical swine fever virus during infection, and extensive hemorrhage is the most typical clinical sign of classical swine fever. To investigate the molecular mechanism of hemorrhagic pathogenesis, two-dimensional difference gel electrophoresis with fluorescent dyes (2D-DIGE) was used to analyze the proteomic profile of primary porcine umbilical vein endothelial cells (PUVECs) following CSFV infection. Of 15 protein spots with differential expression, 8 were characterized by MALDI-TOF-MS/MS in infected PUVECs at 48 h p.i.: moesin, peroxiredoxin 6, stathmin-1, a protein similar to nascent polypeptide-associated complex alpha subunit isoform 2, phosphoglycerate kinase 1, glucosidase II, transketolase and α-tubulin. These could be sorted into 5 functional groups: glycometabolism, cell proliferation, anti-oxidative stress, inflammatory response and cytoskeleton. Western blot and real-time RT-PCR analysis confirmed the down-regulation of phosphoglycerate kinase 1 (PGK1) and up-regulation of moesin identified by 2D-DIGE. Pathway analysis of these 15 differentially expressed proteins showed that CSFV infection altered the metabolism, cytoskeleton and cell proliferation of PUVECs, and that consequently an inflammatory response was induced.  相似文献   

11.
African swine fever virus (ASFV) is a complex DNA virus that employs polyprotein processing at Gly-Gly-Xaa sites as a strategy to produce several major core components of the viral particle. The virus gene S273R encodes a 31-kDa protein that contains a "core domain" with the conserved catalytic residues characteristic of SUMO-1-specific proteases and the adenovirus protease. Using a COS cell expression system, it was found that protein pS273R is capable of cleaving the viral polyproteins pp62 and pp220 in a specific way giving rise to the same intermediates and mature products as those produced in ASFV-infected cells. Furthermore, protein pS273R, like adenovirus protease and SUMO-1-specific enzymes, is a cysteine protease, because its activity is abolished by mutation of the predicted catalytic histidine and cysteine residues and is inhibited by sulfhydryl-blocking reagents. Protein pS273R is expressed late after infection and is localized in the cytoplasmic viral factories, where it is found associated with virus precursors and mature virions. In the virions, the protein is present in the core shell, a domain where the products of the viral polyproteins are also located. The identification of the ASFV protease will allow a better understanding of the role of polyprotein processing in virus assembly and may contribute to our knowledge of the emerging family of SUMO-1-specific proteases.  相似文献   

12.
13.
To identify genetic determinants of classical swine fever virus (CSFV) virulence and host range, chimeras of the highly pathogenic Brescia strain and the attenuated vaccine strain CS were constructed and evaluated for viral virulence in swine. Upon initial screening, only chimeras 138.8v and 337.14v, the only chimeras containing the E2 glycoprotein of CS, were attenuated in swine despite exhibiting unaltered growth characteristics in primary porcine macrophage cell cultures. Additional viral chimeras were constructed to confirm the role of E2 in virulence. Chimeric virus 319.1v, which contained only the CS E2 glycoprotein in the Brescia background, was markedly attenuated in pigs, exhibiting significantly decreased virus replication in tonsils, a transient viremia, limited generalization of infection, and decreased virus shedding. Chimeras encoding all Brescia structural proteins in a CS genetic background remained attenuated, indicating that additional mutations outside the structural region are important for CS vaccine virus attenuation. These results demonstrate that CS E2 alone is sufficient for attenuating Brescia, indicating a significant role for the CSFV E2 glycoprotein in swine virulence.  相似文献   

14.
Twelve miniature pigs were inoculated with an attenuated African swine fever virus to study glomerular involvement in surviving pigs. In acute phase, kidneys were severely affected and displayed a glomerular capillary thrombosis with fibrin deposition in vascular lumen, detected by immunofluorescence. Fibrin-positive deposits were progressively cleared between one to three months after infection in surviving pigs. The histological picture in kidneys of surviving pigs, up to one post-infection year, showed a focal and segmental glomerulonephritis with hyalinosis, and IgM and C3 deposition was detected by immunofluorescence. Its pathogeny as an evolutive stage of acute glomerular injury is pointed out.  相似文献   

15.
Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part, through its ability to induce chemokine synthesis in infected airway epithelial cells. RANTES (regulated upon activation, normal T-cells expressed and secreted) is a CC chemokine which recruits and activates monocytes, lymphocytes, and eosinophils, all cell types present in the lung inflammatory infiltrate induced by RSV infection. In this study we investigated the role of reactive oxygen species in the induction of RANTES gene expression in human type II alveolar epithelial cells (A549), following RSV infection. Our results indicate that RSV infection of airway epithelial cells rapidly induces reactive oxygen species production, prior to RANTES expression, as measured by oxidation of 2',7'-dichlorofluorescein. Pretreatment of airway epithelial cells with the antioxidant butylated hydroxyanisol (BHA), as well a panel of chemically unrelated antioxidants, blocks RSV-induced RANTES gene expression and protein secretion. This effect is mediated through the ability of BHA to inhibit RSV-induced interferon regulatory factor binding to the RANTES promoter interferon-stimulated responsive element, that is absolutely required for inducible RANTES promoter activation. BHA inhibits de novo interferon regulator factor (IRF)-1 and -7 gene expression and protein synthesis, and IRF-3 nuclear translocation. Together, these data indicates that a redox-sensitive pathway is involved in RSV-induced IRF activation, an event necessary for RANTES gene expression.  相似文献   

16.
17.
黄病毒科病毒核衣壳蛋白的核仁定位在病毒颗粒包装与病毒复制中发挥重要作用。为鉴定黄病毒科的猪瘟病毒Core蛋白核仁定位序列,本研究构建了将Core蛋白、截短突变体和氨基酸位点突变体分别与增强型绿色荧光蛋白(enhanced green fluorescent protein, EGFP )融合的真核表达质粒,转染至PK15细胞后进行表达和定位分析,结果显示 Core蛋白核仁定位序列为PESRKKL,其关键氨基酸为R76K77,对理解猪瘟病毒Core蛋白结构与功能和为后续研究Core蛋白在病毒复制及颗粒包装中的作用有重要意义。  相似文献   

18.
19.
Most eukaryotic mRNAs require the cap-binding complex elF4F for efficient initiation of translation, which occurs as a result of ribosomal scanning from the capped 5' end of the mRNA to the initiation codon. A few cellular and viral mRNAs are translated by a cap and end-independent mechanism known as internal ribosomal entry. The internal ribosome entry site (IRES) of classical swine fever virus (CSFV) is approximately 330 nt long, highly structured, and mediates internal initiation of translation with no requirement for elF4F by recruiting a ribosomal 43S preinitiation complex directly to the initiation codon. The key interaction in this process is the direct binding of ribosomal 40S subunits to the IRES to form a stable binary complex in which the initiation codon is positioned precisely in the ribosomal P site. Here, we report the results of analyses done using enzymatic footprinting and mutagenesis of the IRES to identify structural components in it responsible for precise binding of the ribosome. Residues flanking the initiation codon and extending from nt 363-391, a distance equivalent to the length of the 40S subunit mRNA-binding cleft, were strongly protected from RNase cleavage, as were nucleotides in the adjacent pseudoknot and in the more distal subdomain IIId1. Ribosomal binding and IRES-mediated initiation were abrogated by disruption of helix 1b of the pseudoknot and very severely reduced by mutation of the protected residues in IIId1 and by disruption of domain IIIa. These observations are consistent with a model for IRES function in which binding of the region flanking the initiation codon to the decoding region of the ribosome is determined by multiple additional interactions between the 40S subunit and the IRES.  相似文献   

20.
Autophagy plays an important role in cellular responses to pathogens. However, the impact of the autophagy machinery on classical swine fever virus (CSFV) infection is not yet confirmed. In this study, we showed that CSFV infection significantly increases the number of autophagy-like vesicles in the cytoplasm of host cells at the ultrastructural level. We also found the formation of 2 ubiquitin-like conjugation systems upon virus infection, including LC3-I/LC3-II conversion and ATG12–ATG5 conjugation, which are considered important indicators of autophagy. Meanwhile, high expression of ATG5 and BECN1 was detected in CSFV-infected cells; conversely, degradation of SQSTM1 was observed by immunoblotting, suggesting that CSFV infection triggered a complete autophagic response, most likely by the NS5A protein. Furthermore, by confocal immunofluorescence analysis, we discovered that both envelope protein E2 and nonstructural protein NS5A colocalized with LC3 and CD63 during CSFV infection. Examination by immunoelectron microscopy further confirmed the colocalization of both E2 and NS5A proteins with autophagosome-like vesicles, indicating that CSFV utilizes the membranes of these vesicles for replication. Finally, we demonstrated that alteration of cellular autophagy by autophagy regulators and shRNAs affects progeny virus production. Collectively, these findings provide strong evidence that CSFV infection needs an autophagy pathway to enhance viral replication and maturity in host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号