首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endocrine basis for testicular function in the stallion   总被引:1,自引:0,他引:1  
Roser JF 《Theriogenology》1997,48(5):883-892
The specific nature and relative contribution of the various factors involved in the endocrine/paracrine/autocrine control of reproductive function in normal stallions are not well defined nor have they been elucidated in the idiopathic subfertile/infertile stallion. Over the last 9 years, work in our laboratory has been focused in characterizing the hypothalamic-pituitary-testicular axis in fertile, subfertile (idiopathic oligospermia) and infertile (idiopathic azoospermia) stallions. We have identified endocrine factors and mechanisms important for normal reproductive function, and demonstrated specific hormonal changes in pituitary and testicular function between fertile, subfertile and infertile stallions. Recent evidence suggests that the primary defect is at the level of the testes. The nature of the dysfunction does not appear to involve changes in LH receptor binding kinetics but may be related to post-receptor mechanisms.  相似文献   

2.
It is well established in many mammalian species, including the horse that normal testicular function is dependent upon a functional hypothalamic-pituitary-testicular (HPT) axis, which involves classic feedback mechanisms. The major HPT hormones involved in the stallion are gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), estrogens (Es) and inhibin (INH). Although prolactin (PRL) fluctuates with season in the stallion and both PRL and thyroid hormone (TH) affect reproduction in other male species, their effects on stallion reproduction have not been elucidated. Growth hormone (GH) in the stallion may be involved in sperm motility, production and secretion of insulin-like growth factor-1 (IGF-1) and LH-induced testosterone release. The action of these hormones and the products involved for normal spermatogenesis require cell to cell communication within the testis. The somatic cell types, Leydig, Sertoli and peritubular myoid cells, all support germ cell development, maturation and release into the seminiferous tubule lumen. The cell to cell crosstalk involves an intricate network of paracrine-autocrine systems that support the endocrine input to modulate cell function. In other male species, researchers have demonstrated the reproductive effects of such paracrine-autocrine factors as IGF-1, transferrin, androgens, estrogens, inhibin, insulin like peptide 3 (INSL3), beta-endorphin and oxytocin. The specific nature and relative contribution of these various factors on testicular function in fertile and subfertile stallions are under investigation. This review summarizes current information regarding the nature of the multiple endocrine-paracrine-autocrine systems that may be necessary for normal testicular function in the stallion.  相似文献   

3.
The exact seasonal timing of normal testis function is a crucial precondition for the reproductive fitness of roe bucks and for successful breeding during rut in July–August. Production of spermatozoa and testosterone requires both endocrine regulation and local testicular control by autocrine/paracrine factors. These local control mechanisms include the action of several growth factors. Our short review assigns histological organization of roe deer testis to new data on the involvement of several growth factors in its regulation. The expression of growth factors is season-specific and cell-type-specific. This suggests its functional role in the complex interaction between germinative and somatic cells for the regulation of testis growth, spermatogenesis and function of hormone-producing cells. The authors dedicate this review to Prof. Dr. Christian Pitra who celebrates his 65th birthday in April 2006.  相似文献   

4.
Activins and inhibins, which are endocrine regulators of anterior pituitary function, have also been reported to participate in the paracrine and autocrine regulation of reproductive function. To determine the in vivo effects of overexpressed activin/inhibin, we generated transgenic mice carrying the human activin/inhibin betaA subunit mini gene under the regulatory control of the mouse methallothionein promoter. In one of the transgenic line analyzed, the betaA subunit gene was preferentially expressed in the testis. Ectopic and allochronic expression of the betaA gene started at 3 weeks after birth and transgenic male mice became sterile in the ensuing several weeks. Histological analysis revealed testicular degeneration in these mice. The results from this transgenic line strongly support the in vivo activity of activin/inhibin in male reproductive functions.  相似文献   

5.
Situations in which suppression or stimulation of reproductive activity in stallions has been attempted, or is desired, include resolution of the equine arteritis virus 'shedding' state, induction of testicular descent in inguinal cryptorchids, and the improvement of sperm production capacity and/or semen quality in sub-fertile stallions. However, the most common reason for wanting to modulate reproductive activity in a stallion is to alter the expression of sexual behaviour. In the case of intact stallions used for competitive or recreational purposes, the overt expression of sexual or aggressive behaviour can be distracting for both animal and owner and, in some cases, dangerous to all concerned. By the same token, a breeding stallion that displays little interest in mounting a mare/phantom, or is slow to achieve erection and/or ejaculation, can be extremely frustrating. This paper reviews the major pharmacological agents reported to usefully modify reproductive activity in stallions, and outlines their pros and cons when compared to training, management or surgical alternatives.  相似文献   

6.
High levels of plasma estrogens constitute an endocrine peculiarity of the adult stallion. This is mostly due to testicular cytochrome p450 aromatase, the only irreversible enzyme responsible for the bioconversion of androgens into estrogens. To identify more precisely the testicular aromatase synthesis sites in the stallion, testes from nine horses (2-5 years) were obtained during winter or spring. Paraplast-embedded sections were processed using rabbit anti-equine aromatase, followed by biotinylated goat anti-rabbit antibodies, and amplified with a streptavidin-peroxidase complex. Immunoreactivity was detected with diaminobenzidine. Immunofluorescence detection, using fluoroisothiocyanate-conjugated goat anti-rabbit antibodies, was also applied. Specific aromatase immunoreactivity was observed intensely in Leydig cells but also for the first time, to a lesser extent, in the cytoplasm surrounding germ cells at the junction with Sertoli cells. Interestingly, the immunoreactivity in Sertoli cells appears to vary with the spermatogenic stages in the basal compartment (with spermatogonia) as well as in the adluminal one (with spermatids). Relative staining intensity in Leydig and Sertoli cells and testicular microsomal aromatase activity increased with age. The present study in stallions indicates that in addition to Leydig cells, Sertoli cells also appear to participate in estrogen synthesis, and this could play a paracrine role in the regulation of spermatogenesis.  相似文献   

7.
Relatively little is known about endocrine control of reproduction in the stallion, but gonadotropins are thought to be central in regulating spermatogenesis and libido. The ability to effectively antagonise GnRH, and thereby gonadotropins, is therefore important both in further investigations of hormonal control of reproduction in stallions, and for clinical applications. In the present study four pony stallions were treated with a potent GnRH antagonist, Antarelix. Their libido, seminal parameters, and hormonal profiles were compared with those recorded before administration of the antagonist. Plasma concentrations of gonadotropins, testosterone and estradiol decreased by 48 h after antagonist administration, with estradiol and FSH being most consistently suppressed, and remained at reduced concentrations for 4 weeks. Spermatozoal motility, numbers and morphology were not significantly affected by treatment, but increasing numbers of round spermatogenic cells were seen in the ejaculate as the trial progressed. Libido was assessed by the time taken for the stallions to regain an erection in the presence of a mare after ejaculation (refractory period). The refractory period increased significantly after treatment. When the stallions were castrated 8 weeks after antagonist treatment, histological evidence of testicular degeneration was present. We concluded that use of this antagonist showed promise as a valuable research tool in modulating changes in circulating hormone concentrations in stallions. Reversibility of the effects on libido and testicular changes need further investigation.  相似文献   

8.
Factors affecting testicular measurements in situ and the relationships among the measurements and various reproductive characteristics were studied using data from 48 stallions. Mean values during the breeding season are provided for scrotal width, widths and lengths of individual testes, combined weight of testicular parenchyma, daily sperm production and daily sperm output. Testicular measurements were highly repeatable from day to day and for repeated measurements on a given day; technician provided the largest source of variation in the measurements of a given stallion. Age significantly affected all testicular measurements; testicular size for 2- to 3-year-old stallions did not differ (P greater than 0.05) from that for 4- to 6-year-olds, but was smaller (P less than 0.05) than testicular size of stallions greater than or equal to 7 years old. Scrotal width was correlated (P less than 0.01) with daily sperm production (r = 0.75) and daily sperm output (r = 0.55) and was generally the most repeatable measurement.  相似文献   

9.
10.
Adult roe deer males show seasonal cycles of testicular growth and involution. The exact timing of these cycles requires endocrine regulation and local testicular control by autocrine/paracrine factors. Recent findings suggest that the vascular endothelial growth factor (VEGF) might have effects on both vascular and germinative cells in testis. Thus, we studied the expression pattern of vascular endothelial growth factor (VEGF) in roe deer testis using quantitative RT-PCR. The strength of VEGF mRNA expression depended on season. It reached its highest level at the peak of spermatogenesis during the pre-rutting period and had its nadir at the end of the rut when involution already began. The results suggested that VEGF may directly affect the regulation of spermatogenesis but may not be involved predominantly in testicular microvasculature as initially expected.  相似文献   

11.
In the cryptorchid stallion, spermatogenesis is arrested at various levels before the completion of meiosis. In men, infantile cryptorchidism is also often associated with oligo- and azoospermia during adulthood. An impairment of spermatogenesis might be reflected in the level of locally produced factors. Formerly, a meiosis-activating sterol (T-MAS) has been isolated in murine and bovine testes. This sterol possesses the potential to trigger resumption of meiosis in cultured mouse oocytes, indicating that it might play an important role in the regulation of the meiotic process in the female gamete. The function of T-MAS in the testis is still unclear, but T-MAS may be associated with spermatogenesis. The objectives of this study were 1) to demonstrate the presence of T-MAS in equine testes, 2) to compare the contents of T-MAS in testicular tissue of stallions with complete and incomplete testicular descent and 3) to compare testicular T-MAS concentration before and after puberty Testes were collected from 16 normal and cryptorchid stallions submitted for castration and stored at -80 degrees C until the content of T-MAS was measured quantitatively with an HPLC-assay. In stallions > or = 2 years of age, the content of T-MAS was higher (P < 0.001) in normal testes (19.3+/-1.1 microg T-MAS/g, n=7) than in inguinally (4.1+/-2.4 microg T-MAS/g, n=4) or abdominally located testes (1.6+/-0.2 microg T-MAS/g, n=2). The contents of T-MAS in normal testes from stallions < 2 years of age (2.8+/-1.5 microg T-MAS/g, n=4) was lower than in normal testes from stallions > or =2 years of age (P < 0.001) From the present study it can be concluded that T-MAS is present in equine testicular tissue. Furthermore, the present study demonstrates that the production of T-MAS in testicular tissue is, concurrently with spermatogenesis, associated with normal testicular descent and is temporarily related to the onset of puberty.  相似文献   

12.
A survey of the fertility of Icelandic stallions   总被引:1,自引:0,他引:1  
Very limited information is available on the breeding performance of Icelandic stallions, let alone the effect that management practices may have had on such performance. As an extensively kept, largely genetically isolated breed of horse it provides a good model for the study of factors that affect reproductive performance without the additional complication of selective breeding, infectious infertility and breed effect. A survey was conducted using 27 Icelandic stallions covering 1590 mares within the normal Icelandic breeding system (May to September). During the season, stallions cover mares within three periods of time, each period being of a similar length (average 35.5 days). During period 1, mares are covered in hand and at pasture. During periods 2 and 3, all mares are covered at pasture. The overall fertility rate for Icelandic stallions was calculated. The effect of a range of variables on fertility was investigated statistically using a number of models in an attempt to minimise the effect of confounding factors. An overall adjusted fertility rate for Icelandic stallions of 67.7% was obtained. The following factors were shown to have a significant effect on fertility: age of mare (P<0.001), training level of stallion (P<0.05) and method of breeding (P<0.05). For some individual stallions reproductive status of the mare also had a significant (P<0.001) effect. Many of these factors have been observed to effect FR in other more intensively managed equine populations. However, the less dramatic detrimental effect of age and the lack of a significant effect of mare reproductive status in most stallions suggests that infertility problems are less evident in Icelandic mares, possibly due to less emphasis on selection for athletic performance and the accepted culling of subfertile stock.  相似文献   

13.
The growth hormone-insulin-like growth factor-I axis and colorectal cancer   总被引:10,自引:0,他引:10  
The growth hormone (GH)-insulin-like growth factor (IGF)-I axis is an important modulator of growth and development, but in addition to their classical role as endocrine hormones, its components also regulate a wide range of biological functions through paracrine and autocrine mechanisms. Their potent mitogenic and anti-apoptotic effects play a critical role in the regulation of rapidly renewing epithelial cell populations such as those found in the colon. Recent evidence suggests an association between inappropriate regulation of the GH-IGF-I axis and the development of colorectal cancer. However, the molecular mechanisms and signalling pathways responsible are only beginning to be unravelled, as are the relative contributions of the endocrine and autocrine or paracrine effects.  相似文献   

14.
The genetic and molecular mechanisms that control the development of capillary blood vessels during follicular development are beginning to be elucidated. Ovarian follicles contain and produce angiogenic factors that may act alone or in concert to regulate thecal angiogenesis. These factors are ultimately controlled by endocrine, paracrine and autocrine regulation in the ovary. Our recent study indicated that vascular endothelial growth factor (VEGF) plays an important role in the thecal angiogenesis during follicular development. In this review, we focus on the vasculature and the expression of angiogenic factors during follicular development in a mammalian ovary.  相似文献   

15.
Breeding groups with multiple stallions occur sympatrically with single-stallion breeding groups in feral horse, Equus caballus, populations. Mutualism and reciprocal altruism between stallions have been proposed to explain the origin and functioning of multistallion bands. However, empirical support for these hypotheses is contradictory and incomplete. Furthermore, there are no explicit tests of the predictions that each hypothesis makes about stallion behaviour and social structure. We compared nine multistallion and 18 single-stallion bands in the Kaimanawa Ranges, New Zealand. Compared with agonistic behaviours, affiliative behaviours were relatively unimportant in the relationships between stallions within bands. The number of stallions in the band did not have a positive influence on mare group size, stability, home range quality or reproductive success in bands. Furthermore, there was a positive relationship between aggression ('intolerance') by the dominant towards subordinate stallions and the subordinates' effort in mare group defence ('helping') but a negative relationship between helping effort by subordinates and their proximity to, and mating with, the bands' mares. Therefore, the predictions of the mutualism and reciprocal altruism hypotheses were not supported. Indeed, for some of the predictions we found the opposite outcomes to be true. Multistallion bands had significantly poorer reproductive success, and dominant stallions were less tolerant of subordinates that helped most and reduced their access to mares. Nevertheless, in all other respects Kaimanawa stallions in multistallion bands behaved like those described elsewhere. Thus, we reject cooperative hypotheses for multimale breeding groups in horses and discuss the mate parasitism and consort hypotheses as better alternatives. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

16.
17.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

18.
Leydig cells located in the interstitial space of the testicular parenchyma produce testosterone which plays a critical role in the maintenance and restoration of spermatogenesis in many species, including horses. For normal spermatogenesis, maintaining Leydig cells is critical to provide an optimal and constant level of testosterone. Recently, an anti-apoptotic effect of IGF-I in testicular cells in rats has been reported, but a similar effect of IGF-I on equine Leydig cells remains to be elucidated. If IGF-I also protects stallion testicular cells from undergoing apoptosis, then IGF-I may have potential as a treatment regime to prevent testicular degeneration. The present study was designed to evaluate the anti-apoptotic effect of IGF-I on cultured equine Leydig cells. Testes were collected from 5 post-pubertal stallions (2-4 years old) during routine castrations. A highly purified preparation of equine Leydig cells was obtained from a discontinuous Percoll gradient. Purity of equine Leydig cells was assessed using histochemical 3β-HSD staining. Equine Leydig cells and selected doses of recombinant human IGF-1 (rhIGF-I; Parlow A.F., National Hormone and Peptide Program, Harbor-UCLA Medical Center) were added to wells of 24 or 96 well culture plates in triplicate and cultured for 24 or 48 h under 95% air:5% CO(2) at 34°C. After 24 or 48 h incubation, apoptotic rate was assessed using a Cell Death Detection ELISA kit. Significantly lower apoptotic rates were observed in equine Leydig cells cultured with 5, 10, or 50ng/ml of rhIGF-I compared with control cells cultured without rhIGF-I for 24h. Exposure to 1, 5, 10 or 50 ng/ml of rhIGF-I significantly decreased apoptotic rate in equine Leydig cells cultured for 48 h. After 48 h incubation, cells were labeled with Annexin V and propodium iodine to determine the populations of healthy, apoptotic, and necrotic cells by counting stained cells using a Nikon Eclipse inverted fluorescence microscope. As a percentage of the total cells counted, significantly lower numbers of apoptotic cells were observed in cells treated with 10 (9%) or 50 ng/ml (10%) of rhIGF-I compared with cells cultured without rhIGF-I (control, 22%). In this study, the results from the two assays indicated that rhIGF-I protected equine Leydig cells from undergoing apoptosis during cell culture for 24h or 48 h. In conclusion, IGF-I may be an important paracrine/autocrine factor in protecting equine Leydig cells from undergoing apoptosis.  相似文献   

19.
Significant amounts of alkaline phosphatase (AP) activity have been found in semen plasma from numerous species. In species in which the majority of semen plasma AP (SPAP) activity originates from the epididymis and testicle, SPAP activity can be used clinically as a marker to differentiate testicular origin azoospermia or oligospermia from ejaculatory failure. Information on SPAP activity in stallions to date has been limited. In this study, a standard clinical chemistry analyzer was used to determine AP activity in pre-ejaculatory fluid and ejaculates from groups of normal stallions. Additionally, accessory glands, epididymides, testicles and other components of the urogenital tract of normal stallions were assayed to determine which tissues contain SPAP activity. The results indicated that levels of AP activity are low in pre-ejaculatory fluid, but significantly higher in ejaculatory fluid from normal stallions. Spermatozoa were not a significant source of SPAP activity. High levels of SPAP activity were found in the testes and epididymides. These findings suggest that SPAP activity is a candidate for a sperm-independent marker for ejaculation in the stallion. Finally, AP activity was determined in ejaculatory fluid from a stallion with bilaterally blocked ampullae, both before and after relief of the blockage. While the blockage was present, AP activity in ejaculatory fluid was low. However, following relief of the blockage, AP activity in ejaculatory fluid rose dramatically, thus suggesting that AP activity will be useful as an inexpensive, simple clinical assay for differentiating ejaculatory failure or excurrent duct blockages from testicular origin azoospermia and oligospermia.  相似文献   

20.
Liu XH  Tang CS 《生理科学进展》2008,39(3):196-202
近年发现干细胞具有很强的旁/自分泌功能,本文综述干细胞所分泌的生长因子、细胞因子、调节肽、细胞信号分子等生物活性因子,以及缺血、缺氧、生长因子、性别和其它激素对干细胞分泌功能的调节;并分析干细胞分泌功能在血管生成、心脏、肝脏、肾脏和神经系统保护中的作用,认为干细胞可通过其分泌功能影响靶器官结构、功能状态及其病理状态下的修复,是干细胞治疗改善靶器官功能、抗凋亡、抗炎等作用的机制之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号