首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest.  相似文献   

2.
Patterns and levels of genetic diversity mayhave significant influence on the long termpersistence of local populations and revealingsuch information is important in protectingrare species. In this study we investigated thegenetic pattern in five microsatellite lociwithin five Swedish populations of the rareorchid species Gymnadenia odoratissima. Thegeographic distribution of G. odoratissima isrestricted to Europe and in Scandinavia it isonly found in three provinces in southernSweden; Östergötland,Västergötland and on the island ofGotland.Compared with the more widespread congener G.conopsea our results indicate lower levels ofgenetic variation within and higher degrees ofgenetic differentiation among populations ofG. odoratissima (HEL = 0.6–0.8 in G. conopseaand 0.3–0.7 in G. odoratissima; FST over allpopulations = 0.06 in G. conopsea and 0.19 inG. odoratissima). Also, we found a cleardistinction among mainland and islandpopulations of G. odoratissima wherepopulations on the island of Gotland seem toexhibit higher levels of gene flow andintragenetic variation, probably as a result ofa larger number of existing populations.Future conservation of this species shouldfocus on facilitation on colonisation events,especially on the mainland, and preservation ofthe genetically more variable Gotlandpopulations.  相似文献   

3.
4.
Human‐caused habitat destruction and modification constitute one of the largest threats to population persistence and biodiversity, and are also suspected to be the major cause behind the global decline of amphibian populations. We assessed the potential role of agriculture‐related habitat fragmentation on population size and genetic variability in the common frog (Rana temporaria) by recording the occurrence, population density and genetic diversity in three geographically disparate regions in Sweden – each containing landscapes of high and low agricultural activity – and related these to landscape variables extracted from digital maps. We found a highly significant region‐by‐landscape interaction in occurrence, population density and genetic diversity revealing a reversed response to agriculture from south to north: while the effects of agriculture on R. temporaria populations were negative in the south, there were no effects in the central region, whereas positive effects were observed in the north. Spatial autocorrelation analyses of genetic data revealed that populations in high agricultural activity areas were more isolated than populations in low activity areas both in the southern and central regions of Sweden. Landscape diversity showed a strong positive correlation with both density and occurrence of frogs in Sweden as a whole, as well as in the southern region. Also, negative effects of roads and positive effects of ditches on genetic diversity were found in the south. Overall, these results suggest clear but regionally opposite effects of habitat structure on the population size and genetic diversity of amphibian populations. This means that the management strategy aiming to maximize the size and genetic diversity of local common frog populations, and perhaps also those of other amphibian populations, should account for regional differences in existing land‐use patterns.  相似文献   

5.
6.
We investigated plant reproduction in relation to genetic structure, population size, and habitat quality in 13 populations of the rare biennial plant Pedicularis palustris with 3-28500 flowering individuals. We used AFLP (amplified fragment length polymorphism) profiles to analyze genetic similarities among 129 individuals (3-15 per population). In a cluster analysis of genetic similarities most individuals (67%) were arranged in population-specific clusters. Analysis of molecular variance indicated significant genetic differentiation among populations and among and within subpopulations (P < 0.001). Gene flow (N(e) m) was low (0.298). On average, plants produced 55 capsules, 17 seeds per fruit, and 42 seedlings in the following growing season. The number of seeds per capsule was independent of population size and of genetic variability. In contrast, the number of capsules per plant (P < 0.05) and the number of seedlings per plant (P < 0.05) were positively correlated with population size. The relation between population size and the number of seeds per plant was not significant (P = 0.075). The number of capsules and of seeds and seedlings per plant (P < 0.01) were positively correlated with genetic variability. Genetic variability was independent of actual population size, suggesting that historical population processes have to be taken into account, too. Stepwise multiple regressions revealed additional significant relationships of habitat parameters (soil pH, C:N ratio), vegetation composition, and standing crop on reproductive components. We conclude that populations of P. palustris are genetically isolated and that reproductive success most likely is influenced by population size, genetic variability, and habitat quality. Management strategies such as moderate grazing, mowing, and artificial gene flow should endeavor to increase population size as well as genetic variation.  相似文献   

7.
Habitat fragmentation can significantly affect mating and pollen dispersal patterns in plant populations, although the differential effects of the various aspects of fragmentation are poorly understood. In this study, we used eight microsatellite loci to investigate the effect of fragmentation on the mating system and pollen dispersal within one large and eight small population remnants of Banksia sphaerocarpa var. caesia, a bird-pollinated shrub in the southern agricultural region of Western Australia. The large population had a much larger neighbourhood size and lower selfing rate, maternal pollen pool differentiation and within-plot mean pollen dispersal distance than the small populations. Outcrossing was consistently high and ranged from 85.7% ± 2.6 to 98.5% ± 0.9, and mating patterns suggested nearest-neighbour pollination. Pollen immigration into small populations ranged from 2.8% ± 1.8 to 16.5% ± 3.2. Using the small populations, we tested for correlations between various fragmentation variables and mating system and pollen dispersal parameters. We found significant negative linear relationships between population isolation and outcrossing rate; population shape and neighbourhood size; and conspecific density and mean pollen dispersal distance. There were significant positive linear relationships between population shape and pollen pool differentiation and between population size and number of different fathers per seed crop. Our results suggest that birds may use a series of fragmented populations as a vegetation corridor while foraging across the landscape and that population connectivity is a critical determinant of pollinator visitation. Our results also suggest that the effect of a linear population shape on the mating system and pollen dispersal is routinely underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号