首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eight variable regions (microsatellites, insertion/deletion and duplication regions) from the plastid DNA genome were analyzed for 91 populations belonging to Dactylorhiza majalis ssp. traunsteineri and closely related taxa. A total of 36 composite plastid haplotypes were found. The two dominating haplotypes had a clear geographic distribution suggesting at least two separate immigration routes into Scandinavia after the last glaciation: one southwestern route and one or two southeastern routes. D. majalis ssp. traunsteineri could not be clearly separated from any of the other taxa included in the study except for D. majalis ssp. sphagnicola. The morphologically similar taxa D. majalis ssp. traunsteineri, D. majalis ssp. lapponica and D. majalis ssp. russowii showed no genetic differentiation, and therefore we suggest an amalgamation of the three taxa into one broadly circumscribed subspecies; D. majalis ssp. lapponica. The plastid data also revealed incidents of hybridization and possible introgression between D. majalis ssp. lapponica and other members of the genus, e.g., D. incarnata.  相似文献   

2.
Taxonomic complexity may be associated with migration history and polyploidy. We used plastid and nuclear DNA markers to investigate the evolutionary history of the systematically challenging Dactylorhiza maculata polyploid complex. A total of 1833 individuals from 298 populations from throughout Europe were analysed. We found that gene flow was limited between the two major taxa, diploid ssp. fuchsii (including ssp. saccifera) and tetraploid ssp. maculata. A minimum of three autotetraploid lineages were discerned: (1) southern/western ssp. maculata; (2) northern/eastern ssp. maculata; and (3) Central European ssp. fuchsii. The two ssp. maculata lineages, which probably pre‐date the last glaciation, form a contact zone with high genetic diversity in central Scandinavia. Intermediate plastid haplotypes in the contact zone hint at recombination. Central Europe may have been a source area for the postglacial migration for the southern/western lineage of ssp. maculata, as well as for ssp. fuchsii. The northern/eastern lineage of ssp. maculata may have survived the LGM in central Russia west of the Urals. The tetraploid lineage of ssp. fuchsii is indistinguishable from diploid ssp. fuchsii, and is probably of postglacial origin. The Mediterranean region and the Caucasus have not contributed to the northward migration of either ssp. fuchsii or ssp. maculata. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 503–525.  相似文献   

3.
The Dactylorhiza incarnata/maculata complex (Orchidaceae) was used as a model system to understand genetic differentiation processes in a naturally occurring polyploid complex with much of ongoing diversification and wide distribution in recently glaciated areas in northern Europe. Data were obtained for 12 hypervariable regions in the plastid DNA genome. A total of 166 haplotypes were found in a sample of 1099 plants. Allopolyploid taxa have inherited their plastid genomes from D. maculata s.l. Overall haplotype diversity of the combined group of allopolyploid taxa was comparable to that of maternal D. maculata s.l., but populations of allopolyploids were also more strongly differentiated from each other and contained lower numbers of haplotypes than populations of D. maculata s.l. In addition to haplotypes found in extant D. maculata s.l., the allopolyploids also contained several distinct and widespread haplotypes that were not found in any of the parental lineages. Some of these haplotypes were shared between widespread allopolyploids. Divergent allopolyploids with small distributions did not seem to originate from local polyploidization events, but rather as segregates of already existing allopolyploids. Genetic diversification of allopolyploid Dactylorhiza is the result of repeated polyploid formation, secondary hybridization and introgression between already existing polyploids and extant representatives of parental lineages, hybridization between independently derived polyploid lineages, and phyletic diversification in the group of allopolyploids. Although some polyploid taxa must have evolved after the last glaciation, genetic material from the parental lineages has been transferred continuously for longer periods of time. This combination of processes may explain the taxonomic complexity encountered in Dactylorhiza and other polyploid complexes distributed in previously glaciated parts of Europe.  相似文献   

4.
Dactylorhiza majalis subsp. sphagnicola is an allotetraploid marsh orchid derived from parents closely similar to present‐day D. incarnata and the western European form of D. maculata subsp. maculata, suggesting that it has a postglacial origin. It extends from northwestern continental Europe into areas formerly covered by the Weichselian ice sheet in mid‐Scandinavia. Here, we studied the variation at both the plastid and nuclear marker systems to describe the geographical variation in subsp. sphagnicola and its evolutionary history. We investigated whether subsp. sphagnicola is affected by secondary hybridization and gene flow from its parental lineages or from other allotetraploid marsh orchids, and we also compared subsp. sphagnicola with other allotetraploids of similar origins. We analysed 492 plants from 50 populations. Thirty‐seven populations were collected as potential Dactylorhiza majalis subsp. sphagnicola, five as subsp. sesquipedalis (D. elata), one as D. elata subsp. brennensis, one as subsp. calcifugiens, one as subsp. occidentalis and the remaining five as populations with some affinity to subsp. lapponica (including D. traunsteineri). All populations were analysed for plastid haplotypes and nuclear internal transcribed spacer (ITS) allele frequencies, and a subset of 43 populations was analysed for five nuclear microsatellite loci. Dactylorhiza majalis subsp. sphagnicola was dominated by a single plastid haplotype that was also dominant in western European D. maculata subsp. maculata, and most of the alternative haplotypes differed by only one mutation from the dominant one. There was more variation in nuclear microsatellites and ITS, and the variation was geographically structured in these markers. Subspecies occidentalis and calcifugiens shared haplotypes with subsp. sphagnicola, whereas subsp. sesquipedalis and brennensis had other haplotypes. Dactylorhiza majalis subsp. sphagnicola may have a postglacial origin within its present continental distribution. It has incorporated genetic material from D. maculata subsp. maculata by secondary hybridization and introgression, and some northern populations have assimilated strongly divergent haplotypes from the northeastern form of D. maculata subsp. maculata. Subspecies sphagnicola has also evolved morphologically divergent local populations in the north that do not differ from the typical populations in genetic markers. It may form mixed populations with other allotetraploid subspecies of D. majalis and, at least at one site, it has become integrated with subsp. lapponica, demonstrating that independently derived allotetraploids may contribute to a common gene pool. Subspecies calcifugiens seems to be derived from subsp. sphagnicola, and further studies based on a larger sample may confirm that it is better recognized as a variety. The so‐called D. elata subsp. brennensis is of hybrid origin and combines markers from subsp. sesquipedalis with markers from the D. majalis core complex, possibly subsp. majalis. The new combination Dactylorhiza majalis subsp. sesquipedalis (Willd.) H.A.Pedersen & Hedrén comb. nov. is provided. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 174–193.  相似文献   

5.
Hedrén M 《Molecular ecology》2003,12(10):2669-2680
To obtain further information on the polyploid dynamics of the the Dactylorhiza incarnata/maculata polyploid complex and the origin of the allotetraploid D. sphagnicola (Orchidaceae), plastid DNA variation was studied in 400 plants from from Sweden and elsewhere in Europe and Asia Minor by means of polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and sequencing. Allotetraploid taxa in Europe are known have evolved by multiple independent polyploidization events following hybridization between the same set of two distinct ancestral lineages. Most allotetraploids have inherited the plastid genome from parents similar to D. maculata sensu lato, which includes, e.g. the diploid D. fuchsii and the autotetraploid D. maculata sensu stricto. D. sphagnicola carries a separate plastid haplotype different from the one found in other allotetraploid taxa, which is in agreement with an independent origin from the parental lineages. Some of the remaining allotetraploids have local distributions and appear to be of postglacial origin, whereas still other allotetraploids may be of higher age, carrying plastid haplotypes that have not been encountered in present day representatives of the parental lineages. Introgression and hybridization between diploids and allotetraploids, and between different independently derived allotetraploids may further have contributed to genetic diversity at the tetraploid level. Overall, the Dactylorhiza polyploid complex illustrates how taxon diversity and genetic diversity may be replenished rapidly in a recently glaciated area.  相似文献   

6.
We analysed 16 populations of Dactylorhiza majalis subsp. majalis from northern Poland, simultaneously utilizing both morphological and molecular data. Genetic differentiation was examined using five microsatellite loci, and morphological variation was assessed for 23 characters. At the species level, our results showed a moderate level of genetic diversity (A = 6.00; Ae = 1.86; Ho = 0.387; FIS = 0.139) which varied between the studied populations (A = 2.60–4.20; Ae = 1.68–2.39; Ho = 0.270–0.523; FIS = ?0.064–0.355). A significant excess of homozygotes was detected in five population, while excess of heterozygotes was observed in four populations, but the latter values were statistically insignificant. Moderate, but clear between population genetic differentiation was found (FST = 0.101; p < 0.001). Considering pairwise‐FST and number of migrants among populations, we recognized three population groups (I, II, III), where the first could be further divided into two subgroups (Ia, Ib). These three groups differed with respect to gene flow values (Nm = 0.39–1.12). The highest number of migrants per generation was noticed among populations of subgroup Ia (8.58), indicative of a central panmictic population with free gene flow surrounded by peripatric local populations (Ib) with more limited gene flow. Geographic isolation, habitat fragmentation and limited seed dispersal are inferred to have caused limitations to gene flow among the three indicated population groups. There was a significant correlation between the morphological and genetic distance matrices. A weak but significant pattern of isolation by distance was also observed (r = 0.351; p < 0.05).  相似文献   

7.
A tall allotetraploid member of the Dactylorhiza incarnata/maculata complex with unspotted leaves and large pinkish flowers from the island of Gotland in the Baltic was examined for molecular variation patterns at five nuclear microsatellite loci, nuclear ITS and in plastid haplotypes. The allotetraploid was well separated from allopatric allotetraploids of similar appearance, including the western European D. majalis ssp. integrata (syn. D. praetermissa) and forms of D. majalis ssp. lapponica from mainland Sweden. It also differed from other allotetraploids distributed in the Baltic Sea region, including D. majalis ssp. baltica and D. majalis ssp. lapponica. It is here recognized as D. majalis ssp. elatior (Fr.) Hedrén & H. A. Pedersen. Dactylorhiza osiliensis Pikner, described from Saaremaa (Estonia) is regarded as a synonym. The distribution covers Gotland, Saaremaa and possibly Hiiumaa. Dactylorhiza majalis ssp. elatior may have one or several recent origins within its present distribution area, and it contains no other molecular markers than those found in the parental D. incarnata var. incarnata and D. maculata ssp. fuchsii in the same area. It appears to have weak barriers towards secondary hybridization with its parental lineages. The situation is reminiscent to that of other young allotetraploids in the D. majalis s.l. complex, suggesting that introgression may be an underestimated process explaining the accumulation of genetic diversity in evolving allopolyploid plants.  相似文献   

8.
Secondary hybrid zones are not uncommon in Dactylorhiza, but knowledge of ecological and evolutionary consequences of hybridization are scarce. Here, we assess interploidal gene flow and introgression in a hybrid zone between diploid Dactylorhiza incarnata ssp. cruenta (2n = 2x = 40) and its putative allotetraploid derivative D. lapponica (2n = 4x = 80). Photometric quantification of DNA content and morphology confirmed that triploids are abundant in sympatric populations in our study area. Allozyme segregation patterns in D. lapponica supported an allopolyploid origin, although unbalanced genotypes suggested rare pairings between homoeologous chromosomes. Photometric data and chromosome counts suggest backcrossing between the triploid hybrid and D. lapponica, and hence some hybrid fertility. Triploids are morphologically more similar to the tetraploids than the diploids, maybe owing to the hybrid origin of both triploids and tetraploids. The diploids and tetraploids were not more similar in the parapatric populations compared to when they occur in allopatry. This indicates that backcrossing rarely leads to introgression, or alternatively that allopatric populations are not isolated enough to prevent influx of pollen from the other species. Despite some evidence of backcrossing, our study gives few indications that widespread hybridization entails local breakdown of species boundaries. Rather, the hybrid zone may be a transient phenomenon due to intensive mowing, resulting in the opening of habitats and hence bringing the parental species into close contact.  相似文献   

9.
Because of harsh conditions, suboptimal habitat quality and poor connectivity to other populations, plant populations at the margin of a distribution are expected to be less genetically diverse, but to be more divergent from each other than populations in the centre of a distribution. In northern Europe, northern marginal populations may also be younger than populations further to the south, and may have had less time to accumulate genetic diversity by mutation and gene flow. However, orchids have very small seeds, which are easily dispersed long distances by wind, and orchids are therefore expected to show less differentiation between marginal and central populations than other groups of seed plants. Here, we analysed whether Scandinavian populations of the tetraploid marsh orchid Dactylorhiza majalis subsp. majalis differ from central European populations in genetic diversity patterns. A total of 220 plants from eight central European and ten Scandinavian populations was examined for variation at five nuclear microsatellite loci, nuclear ITS and 13 polymorphic sites in noncoding regions of the plastid genome. The total genetic diversity was slightly lower in Scandinavia than in central Europe, both in plastid and nuclear markers, but the differences were small. Also, the Scandinavian populations were less diverse and somewhat more strongly differentiated from each other than the central European ones. Dactylorhiza majalis subsp. majalis has apparently colonized Scandinavia on multiple independent occasions and from different source areas in the south. Seed flow between Scandinavian populations has still not fully erased the patterns imprinted by early colonization. Our results suggest that marginal populations of orchids may be as important as central ones in preserving genetic diversity through Pleistocene glacial cycles. We also predict that orchids with their light seeds are better adapted than many other plants to respond to future climate changes by dispersing into new suitable areas.  相似文献   

10.
Draba ladina (Brassicaceae) is a small alpine flower endemic to the Swiss Alps. It occurs exclusively at elevations between 2600 and 3000 m and is restricted to less than a dozen mountains in the Lower Engadin. Morphological characters and polyploidy suggest a hybrid origin. Potential diploid progenitor species are distributed widely and often occur sympatrically. To study the evolutionary history of D. ladina we assessed intra- and interspecific sequence variation at noncoding chloroplast DNA loci and nuclear rDNA ITS sequences in D. ladina and its presumed progenitor species D. aizoides, D. dubia, and D. tomentosa. A single ITS (Internal Transcribed Spacer) genotype was found in each of D. aizoides and D. dubia and two in D. tomentosa. Additivity of ITS sequences of D. aizoides and D. tomentosa was found in D. ladina, supporting the hypothesis of an allotetraploid origin. Intraspecific cpDNA variation was found in all diploid species, but not in D. ladina. The single chloroplast DNA haplotype found in the latter was closest to one cpDNA haplotype found in D. tomentosa, suggesting that D. tomentosa was the maternal parent. These results suggest that D. ladina is a relatively young, presumably postglacial, taxon with a single allopolyploid origin.  相似文献   

11.
In Europe, the genus Dactylorhiza comprises a bewildering variety of forms that are difficult to sort into discrete species. Most Dactylorhiza species are diploid or tetraploid and contrasting hypotheses have been proposed to explain the complex variation within this group. Using PCR-RFLP analysis in eight putative species, we could identify four highly differentiated chloroplast DNA lineages. The first lineage (clade A) included the unique haplotype found in D. sambucina. Clade B grouped four haplotypes belonging mostly to D. incarnata. Clades C and D included 27 haplotypes detected in diploid D. fuchsii and in all tetraploid species investigated. Eighty percent of the chloroplast variation were consistent with currently accepted species boundaries. The imperfect agreement between chloroplast variation and species boundaries may be ascribed to incomplete lineage sorting and/or reticulation. Our cpDNA results provide strong evidence that the allotetrapolyploids have been formed through asymmetric hybridization with a member of the D. fuchsii / maculata group as the maternal parent.  相似文献   

12.
Sequence data from a portion of the external transcribed spacer (ETS) and from the internal transcribed spacers (ITS1 and ITS2) of 18S-26S nuclear ribosomal DNA were used together with chloroplast DNA PCR-RFLP data to unravel patterns of allotetraploid speciation within the Western European Dactylorhiza polyploid complex. A maximum likelihood tree based on combined ETS and ITS sequences suggests that the Western European Dactylorhiza allotetraploids have evolved by hybridization between four main diploid lineages. Cloned sequences and the topology of the ITS plus ETS tree indicate that the allotetraploid species D. elata, D. brennensis, and D. sphagnicola have originated from the autotetraploid D. maculata together with the diploid D. incarnata, while D. majalis, D. traunsteineri, and D. angustata seem to have evolved by hybridization between the D. fuchsii s.str and D. incarnata lineages. Finally, the diploid D. saccifera lineage seems to have been involved together with the D. incarnata lineage in the formation of the allotetraploid D. praetermissa. The observed congruence between the chloroplast tree and the ITS/ETS tree suggests a directional evolution of the nrDNA after polyploidization in favor of the maternal genome. Considered together with morphological, biogeographical, and ecological evidence, the molecular analysis leads us to recognize four species within the investigated allotetraploid complex, namely D. majalis, D. praetermissa, D. elata, and D. sphagnicola.  相似文献   

13.
The European–Mediterranean–Oriental Dactylorhiza romana/sambucina polyploid complex was studied with regard to genetic and morphological variation patterns. Allozyme and morphometric data were collected from 24 and 19 populations, respectively, initially identified as D. flavescens, D. insularis, D. markusii, D. romana, D. sambucina, and an indeterminate taxon. Genetic distances were calculated and illustrated by an unweighted pair‐group method using arithmetic averages (UPGMA) dendrogram, and principal components analyses (PCAs) were used to summarize morphological variation patterns. Another PCA was performed on combined allozyme and morphometric data. On the basis of the dendrogram and the PCA plots, main groups of populations were delimited, and the probability that each morphological character would distinguish correctly between these groups was estimated. After combining morphometric interpretations with studies of herbarium material and information from the literature, the following taxa were confidently accepted: D. romana ssp. romana, D. romana ssp. guimaraesii (comb. et stat. nov.) , D. romana ssp. georgica, D. sambucina, D. cantabrica (sp. nov.) , and D. insularis. Levels of genetic diversity suggest that D. romana s.s. is the least derived member of the complex. The evolutionary divergence of the diploid species, D. romana and D. sambucina, was probably the outcome of vicariant speciation, whereas D. romana ssp. georgica and D. romana ssp. guimaraesii appear to have evolved from D. romana s.s. through incomplete vicariant and peripheral isolate speciation events, respectively. In some populations of the diploid taxa, a significant deficiency in heterozygotes was found at one to three loci. It is proposed that this pattern may indicate a Wahlund effect, hypothesizing that local populations are subdivided into demes determined by the commonly sympatric occurrence of two distinct colour morphs combined with partial morph constancy of individual pollinators (bumblebees). Several pathways are possible for the origin of the allotriploid D. insularis and the apparently allotetraploid D. cantabrica. A taxonomic revision is provided. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 152 , 405–434.  相似文献   

14.
Germination percentage of Dactylorhiza majalis (Rchb.f.) Hunt & Summerh. (Orchidaceae) was increased by illuminating surface-sterilized, rinsed and incubated seeds with white light in 16 h photoperiods. Optimal exposures (10–14 days) raised germination from 40 to 75%. Longer light treatments resulted in reduced germination percentage and smaller seedlings. Only about 2% of the seeds could actually germinate in photoperiods; the germination of the rest was delayed by initial light and required about 14 days in constant darkness. Interruption of this darkness period with two consecutive photoperiods increased the germination percentage when the interruption occurred before day 8, but not when occurring later than that.  相似文献   

15.
Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland. An erratum to this article can be found at  相似文献   

16.
17.
To gain an overview of the variation in the Dactylorhiza incarnata/maculata complex in northern Poland, ten plastid DNA regions (seven microsatellite and three indel loci) and 23 morphometric characters were used. In total, 972 and 480 samples from 64 and 31 populations were utilized for the genetic and morphometric analyses, respectively. One hundred and forty‐one haplotypes that have not been reported previously were recognized. The continuity of morphological characters between the studied species and the impact of post‐glacial colonization on the observed complexity in the Dactylorhiza incarnata/maculata complex were concluded. It was confirmed that the allotetraploid group of D. majalis s.s. has inherited its plastid genome from D. maculata s.l., specifically from D. maculata ssp. fuchsii. In addition, some of the haplotypes found in D. majalis s.s. were distinct and evidently not present in the preserved D. maculata s.l. Although possible gene flow and introgression between two subspecies of the D. maculata s.l. group were indicated, we suggest that they should be treated as separate evolutionary units. Both the common and rare haplotypes show a similar pattern of geographical distribution for all four taxa analysed, which suggests that hybridization took place relatively recently, shortly after the retreat of the ice sheet. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 121–137.  相似文献   

18.
 Material of Dactylorhiza were sampled from 49 localities in Turkey and investigated for allozyme variation at ten loci (nine enzyme systems). Among diploids, the Anatolian D. osmanica and D. umbrosa were allozymically variable, but not distinct from each other or from D. incarnata. Dactylorhiza saccifera contained the same alleles as the European D. fuchsii. Dactylorhiza iberica and D. euxina were distinct from each other and the other diploids. On basis of allozyme patterns three distinct allotetraploid genotypes were distinguished, and each of them could be treated as a separate species. Dactylorhiza nieschalkiorum is similar to European allotetraploids, and may have arisen from hybridization between D. incarnata s.l. and D. saccifera. Dactylorhiza urvilleana may have arisen from parents related to present-day D. saccifera and D. euxina, but it also contains additional alleles that have not been found in any of the diploids investigated. A third allotetraploid known from four populations in the Ardahan and Kars provinces of north-eastern Turkey combines the allozyme patterns found in material of D. incarnata s.l. from the same area with those from D. euxina. It is here described for the first time as D. armeniaca. Received November 14, 2000 Accepted June 20, 2001  相似文献   

19.
The hybrid origin of the western Mediterranean orchid Dactylorhiza insularis was demonstrated by genetic markers. Allozyme data showed that throughout its range D. insularis has an allotriploid constitution and reproduces apomictically. The parental species of D. insularis were identified as D. romana andD. sambucina; they contributed 2 alleles and 1 allele, respectively, at the allozyme loci studied. The maternal species of D. insularis was D. romana , as inferred from cpDNA ( trn L(UAA) intron). High genetic similarities were found when comparing present populations of D. romana and D. sambucina with their respective genomes 'frozen' in D. insularis. Dactylorhiza insularis showed fixed (or nearly fixed) heterozygosity at 11 out of the 19 loci studied, and poor genetic variation: eight multilocus genotypes were detected at allozyme level. No multilocus genotype differs from the most similar one by more than one allele substitution. All D. insularis individuals showed the same cpDNA haplotype (I) , regardless of their geographic origin and multilocus genotype. The I haplotype is similar, but not identical to that found in D. romana (R). No recurrent formation of D. insularis was observed in hybrid zones between D. romana and D. sambucina , where diploid sexual hybrids (F1; Fn, backcrosses) were detected. Available data agree with a single origin for D. insularis , which possibly occurred in the present postglacial, when D. romana and D. sambucina , expanding from their glacial refugia, came into contact. The genetic homogeneity found between D. romana and D. markusii , both from their locus classicus , indicates that the latter is a junior synonym of D. romana; on the other hand, D. romana and D. sambucina are well differentiated species ( DNei = 0.59).  相似文献   

20.
A population of the tuberous orchid Dactylorhiza lapponica was sampled from June 2000 to June 2001 in the Sølendet Nature Reserve, Central Norway. Dry matter of aerial shoots, old tubers and new (replacement) tubers was measured, as well as reproductive status during 1999–2001. The biomass of the new tuber was found to continue to increase after the assimilation from photosynthesis had ceased in August. It is suggested that the increase is caused by mycotrophic activity and reallocation of nutrients from the aerial shoots. There was a clear relationship between tuber size and flowering behaviour. Individuals with flower primordia had the largest replacement tuber, whereas those that flowered in the sampling season or remained vegetative throughout 1999–2001 had the smallest. Individuals that flowered in the sampling season had the largest old tuber. Those, which had not flowered for at least two years, but had developed flower primordia, had the second largest, and those that remained vegetative throughout 1999–2001 had the smallest one. Individuals with a replacement tuber less than 0.22 g in October, have a very low probability of flowering the following season. Flowering entails a cost in terms of reduced biomass of the replacement tuber compared to vegetative individuals with old tubers of similar size. Allometric analyses revealed that above-ground biomass and biomass of replacement tubers increased with the biomass of old tubers in vegetative individuals. For generative individuals, however, above-ground biomass was only weakly related to below-ground biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号