首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ as an extracellular signal in bone   总被引:3,自引:0,他引:3  
Dvorak MM  Riccardi D 《Cell calcium》2004,35(3):249-255
Bone is the major sink and store for calcium and it fulfils essential roles in the maintenance of extracellular free ionised calcium concentration ([Ca2+]e) within its homeostatic range (1.1-1.3 mM). In response to acute hypercalcaemia or hypocalcaemia, Ca2+ is rapidly transported into or out of bone. Bone turnover (and therefore bone Ca2+ turnover) achieves the long-term correction of the [Ca2+]e by the metabolic actions of osteoblasts and osteoclasts, as they respectively incorporate or release Ca2+ from bone. These processes are regulated by the actions of hormones, such as parathyroid hormone (PTH), the release of which is a function of the [Ca2+]e, and is regulated by the action of the Ca2+-sensing receptor (CaR) in the parathyroid gland. Tissue culture studies indicate that bone cells also directly respond to increasing and decreasing [Ca2+]e in their vicinity, independently of the systemic factors. Nevertheless, further studies are necessary to identify how the acute and long-term local changes in [Ca2+]e affect bone cells and the physiological processes they are involved in. Also, the molecular mechanisms which enable the bone cells to sense and respond to [Ca2+]e are not clear. Like the parathyroid cells, bone cells also express the CaR, and accumulating evidence indicates the involvement of this receptor in their responses to the changing extracellular ionic environment.  相似文献   

2.
Calcium entry in squid axons during voltage clamp pulses   总被引:1,自引:0,他引:1  
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with sodium ion sensitive, current and voltage electrodes. The axons were usually bathed in a solution of varying Ca2+ concentration ([Ca2+]o) containing 150mM each of Na+, K+ and an inert cation such as Li+, Tris or N-methylglucamine and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic Ca2+ level, [Ca2+]i. The effect of membrane voltage on [Ca2+]i was found to depend on the concentration of internal Na+ ([Na+]i). Voltage clamp hyperpolarizing pulses were found to cause a reduction of [Ca2+]i. For depolarizing pulses a relationship between [Ca2+]i gain and [Na+]i indicates that Ca2+ entry is sigmoid with a half maximal response at 22 mM Na+. This Ca2+ entry is a steep function of [Na+]i suggesting that 4 Na+ ions are required to promote the influx of 1 Ca2+. There was little change in Ca2+ entry with depolarizing pulses when [Ca2+]o is varied from 1 to 10mM, while at 50mM [Ca2+]o calcium entry clearly increases suggesting an alternate pathway from that of Na+/Ca2+ exchange. This entry of Ca2+ at high [Ca2+]o, however, was not blocked by Cs+o. The results obtained lend further support to the notion that Na+/Ca2+ exchange in squid giant axon is sensitive to membrane voltage no matter whether this is applied as a constant change in membrane potential or as an intermittent one.  相似文献   

3.
The effects of cyanide on Ca2+ exchange in isolated ventricular myocytes and on the intracellular concentrations of Ca2+, Na+ and H+ have been investigated to assess the contribution that mitochondria might play in cellular Ca2+ metabolism. Ionic levels were measured with ion-selective electrodes. KCN (2.5 mM) inhibited a component of Ca2+ exchange in myocytes that could be attributed to mitochondrial exchange, but was without effect on non-mitochondrial Ca2+ exchange. NaCN (2.5 mM) caused a transient reduction of [H+]i, [Na+]i and [Ca2+]i when applied to the superfusate bathing ventricular trabeculae or papillary muscles. The transient changes of [Na+]i were accentuated when the preparation was exposed to a solution which would be expected to increase the cellular calcium content. The reduction of [Na+]i which accompanies a reduction of the extracellular sodium concentration, [Na]o, was attenuated in the presence of NaCN, but the intracellular acidosis resulting from a reduction of [Na]o was unaffected by NaCN. A small, but significant, rise of [Ca2+]i accompanied a reduction of [Na]o but only when NaCN was present in the superfusate. It is concluded that cyanide ions have a reasonably specific action on cardiac cellular ionic metabolism. Its primary action is to prevent mitochondrial Ca2+ sequestration. It is postulated that a Na+/H+ exchange, possibly at the sarcolemma, could account for some of the changes to sarcoplasmic ionic levels observed. In a solution of low [Na]o, it is concluded that mitochondria could sequester at least 30% of the calcium accumulated by the cell even though the sarcoplasmic [Ca2+] does not exceed 0.3 microM.  相似文献   

4.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

5.
Mitochondrial calcium in relaxed and tetanized myocardium.   总被引:6,自引:0,他引:6       下载免费PDF全文
The elemental composition of rat cardiac muscle was determined with electron probe x-ray microanalysis (EPMA) of rapidly frozen papillary muscles and trabeculae incubated with ryanodine (1 microM) in either 1.2 or 10 mM [Ca2+]o-containing solutions, paced at 0.6 Hz or tetanized at 10 Hz. Total mitochondrial calcium increased significantly, by 4.2 mmol/kg dry weight during a 7 s tetanus, only in muscles tetanized in the presence of 10 mM [Ca2+]o when cytoplasmic Ca2+ is 1-4 microM (Backx, P. H., W.-D. Gao, M. D. Azan-Backx, and E. Marban. 1995. The relationship between contractile force and intracellular [Ca2+] in intact rat trabeculae. J. Gen. Physiol. 105:1-19). Comparison of total mitochondrial with free mitochondrial Ca2+ reported in the literature indicates that the total/free ratio is approximately 6000 at physiological or near-physiological levels of total mitochondrial calcium. Increases in free mitochondrial [Ca2+] consistent with regulation of mitochondrial enzymes should be associated with increases in total mitochondrial calcium detectable with EPMA. However, such increases in mitochondrial calcium occur only as the result of prolonged, unphysiological elevations of cytosolic [Ca2+].  相似文献   

6.
The roles of the intracellular calcium pool involved in regulating the Ca2+ profile and the neuronal survival rate during development were studied by using thapsigargin (TG), a specific inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase in cultured cerebellar granule neurons. Measuring the neuronal [Ca2+]i directly in the culture medium, we found a bell-shaped curve for [Ca2+]i versus cultured days in cerebellar granule neurons maintained in medium containing serum and 25 mM K+. The progressive increase in [Ca2+]i of the immature granule neurons (1-4 days in vitro) was abolished by TG, which resulted in massive neuronal apoptosis. When the [K+] was lowered from 25 to 5 mM, neither the progressively increasing [Ca2+]i nor the survival of immature granule neurons was significantly changed over 24-h incubation. Similarly, TG caused a dramatic decrease in the [Ca2+]i and survival rate of these immature neurons when switched to 5 mM K+ medium. Following maturation, the granule neurons became less sensitive to TG for both [Ca2+]i and neuronal survival. However, TG can protect mature granule neurons from the detrimental effect of switching to a 5 mM K+ serum-free medium by decreasing [Ca2+]i to an even lower level than in the respective TG-free group. Based on these findings, we propose that during the immature stage, TG-sensitive ER Ca2+-ATPase plays a pivotal role in the progressive increase of [Ca2+]i, which is essential for the growth and maturation of cultured granule neurons.  相似文献   

7.
Auxin addition to protoplasts isolated from leaves of 6-day-old wheat seedlings (Triticum aestivum L. cv. Kadett) induced a rapid increase in the cytosolic calcium concentration [Ca2+]cyt. The shifts in [Ca2+]cyt were detected by use of fluorescence microscopy in single protoplasts loaded with the calcium binding tetra[acetoxymethyl]ester of the fluorescent dye, Fura 2. Addition of the synthetic auxin naphthyl acetic acid, 1-NAA, induced an increase in [Ca2+]cyt within 5-10s, while the physiologically non-active analogue, 2-NAA, did not. The amplitude of calcium increase depended on the concentration of 1-NAA. Since the process was affected by different concentrations of Ca2+ in the external medium, and since the calcium channel blockers (nifedipine and verapamil) postponed and inhibited the reaction, it is suggested that auxin primarily activates Ca2+-permeable channels in the plasma membrane. In the presence of low external calcium concentration (0.1 mM), 5 mM LiCl almost totally blocked the increase in [Ca2+]cyt, indicating a possible involvement of tonoplast Ca2+-channels in the auxin-induced [Ca2+]cyt shift. Thus, calcium signalling induced by auxin involves both external and internal Ca2+ pools.  相似文献   

8.
The C-terminal octapeptide of cholecystokinin (CCK-8) is known to stimulate insulin secretion. We examined its effects on the cytoplasmic free calcium concentration ([Ca2+]IC) in isolated rat pancreatic islet cells. At 8.3 mM glucose and 1.28 mM Ca2+, CCK-8 (100 nM) rapidly increased [Ca2+]IC to a short-lived peak, whereafter the [Ca2+]IC, within 1.5 minutes, fell to values below baseline. CCK-8 also rapidly increased the [Ca2+]IC at 3.3 mM glucose and in a calcium deficient medium. However, either at low glucose or in the absence of extracellular Ca2+, the post-peak [Ca2+]IC did not fall below baseline levels. The CCKA receptor antagonist, L-364,718 (20 nM), inhibited the effects of CCK-8 on [Ca2+]IC. The results suggest that CCK-8 in islet cells liberates calcium from intracellular stores by activating CCKA receptors.  相似文献   

9.
Triads isolated from frog and rabbit skeletal muscle were equilibrated with different external [Ca2+], ranging from 0.025 to 10 mM. Vesicular calcium increased with external [Ca2+] as the sum of a linear plus a saturable component; the latter, which vanished after calsequestrin removal, displayed Bmax values of 182 and 132 nmol of calcium/mg of protein, with Kd values of 1.21 and 1.14 mM in frog and rabbit vesicles, respectively. The effect of luminal [Ca2+] on release kinetics in triads from frog and rabbit skeletal muscle was investigated, triggering release with 2 mM ATP, pCa 5, pH 6.8. In triads from frog, release rate constant (k) values increased sixfold after increasing luminal [Ca2+] from 0.025 to 3 mM. In triads from rabbit, k values increased 20-fold when luminal [Ca2+] increased from 0.05 to 0.7 mM. In both preparations, k values remained relatively constant (10-12 s-1) at higher luminal [Ca2+], with a small decrease at 10 mM. Initial release rates increased with luminal [Ca2+] in both preparations; in triads from rabbit the increase was hyperbolic, and in triads from frogs the increase was sigmoidal. These results indicate that, although triads from frog and rabbit respond differently, in both preparations luminal [Ca2+] has a distinctive effect on release, presumably by regulating sarcoplasmic reticulum calcium channels.  相似文献   

10.
The role of acidic intracellular calcium stores in calcium homeostasis was investigated in the Drosophila Schneider cell line 2 (S2) by means of free cytosolic calcium ([Ca2+]i) and intracellular pH (pHi) imaging together with measurements of total calcium concentrations within intracellular compartments. Both a weak base (NH4Cl, 15 mM) and a Na+/H+ ionophore (monensin, 10 microM) evoked cytosolic alkalinization followed by Ca2+ release from acidic intracellular Ca2+ stores. Pretreatment of S2 cells with either thapsigargin (1 microM), an inhibitor of endoplasmic reticulum Ca(2+)-ATPases, or with the Ca2+ ionophore ionomycin (10 microM) was without effect on the amplitude of Ca2+ release evoked by alkalinization. Application of the cholinergic agonist carbamylcholine (100 microM) to transfected S2-DM1 cells expressing a Drosophila muscarinic acetylcholine receptor (DM1) emptied the InsP3-sensitive Ca2+ store but failed to affect the amplitude of alkalinization-evoked Ca2+ release. Glycyl-L-phenylalanine-beta-naphthylamide (200 microM), a weak hydrophobic base known to permeabilize lysosomes by osmotic swelling, triggered Ca2+ release from internal stores, while application of brefeldin A (10 microM), an antibiotic which disperses the Golgi complex, resulted in a smaller increase in [Ca2+]i. These results suggest that the alkali-evoked calcium release is largely attributable to lysosomes, a conclusion that was confirmed by direct measurements of total calcium content of S2 organelles. Lysosomes and endoplasmic reticulum were the only organelles found to have concentrations of total calcium significantly higher than the cytosol. However, NH4Cl (15 mM) reduced the level of total calcium only in lysosomes. Depletion of acidic Ca2+ stores did not elicit depletion-operated Ca2+ entry. They were refilled upon re-exposure of cells to normal saline ([Ca2+]o = 2 mM), but not by thapsigargin-induced [Ca2+]i elevation in Ca(2+)-free saline.  相似文献   

11.
Administration of oral contraceptive (OC) has been associated with body fluid retention and in high doses over a long period, promotes hypertension. This present investigation tests the hypothesis that the dietary calcium supplementation increases salt and water excretion in OC (norgestre/ethinylestradiol) treated 32 female albino rats randomly distributed into four (1-4) groups of 8 rats each: Control, OC-treated, OC-treated+ Calcium diet fed and Calcium diet fed only respectively. OC was administered to the appropriate groups by gavage. Experimental diet contained 2.5% calcium supplement. Plasma and urinary [Na+] [K+] were evaluated after 8 weeks of experimentation by flame photometry and plasma [Ca2+] by colorimetric method. OC-treatment induced a significant fall in urinary [Na+]. Water excretion was significantly reduced in these animals (control, 3.1±0.56 Vs OC-treated rats, 1.47±0.16). OC-treated rats had significantly higher plasma [K+] compared to control rats. Calcium supplementation induced increases in plasma [Na+], [K+] and augmented urinary Na+ excretion (OC-treated + Ca2+ diet Vs OC-treated only). Compared with the control rats, high Ca2+ diet fed rats exhibited significant increases in plasma [Na+] and [K+] accompanied by significant decreases in urinary H20 excretion. These results strongly suggest that high dietary Ca2+ supplementation increases salt and water excretion in OC-treated rats and potentially moderates fluid retention and blood pressure in these animals, and may be of clinical significance in OC-induced abnormal fluid retention and perhaps OC-induced hypertension.Keywords: Hypercalcemic-diet, Oral contraceptive, Plasma electrolytes, Hypertension, Female-albino-rats.  相似文献   

12.
Effects of adrenocorticotropin (ACTH) on cytoplasmic free calcium concentration, [Ca2+]c, have been measured in adrenal glomerulosa cells using a calcium-sensitive photoprotein, aequorin. ACTH causes a rapid and transient increase in [Ca2+]c. Dose response study demonstrates that 1 pM ACTH induces an elevation of [Ca2+]c and that effect of ACTH appears to be saturated at 100 pM. ACTH action is greatly inhibited but not abolished by removal of extracellular calcium and is completely blocked in medium containing no added calcium and 1 mM EGTA. Under similar conditions, angiotensin II induces a remarkable rise in [Ca2+]c. ACTH action is not affected by pretreatment with dantrolene, which considerably decreases angiotensin II action on [Ca2+]c. One micromolar forskolin, which mimics 1 nM ACTH-mediated elevation of intracellular cAMP, does not increase [Ca2+]c nor modulates changes in [Ca2+] induced by a low dose of ACTH. One hundred micromolar forskolin or 1 mM 8-bromo-cAMP, however, increases [Ca2+]c even in calcium-free medium containing 1 mM EGTA. When glomerulosa cells are co-loaded with aequorin and quin2, angiotensin II-induced change in aequorin signal is greatly reduced, and ACTH-induced change is abolished. Quin2 loading results in accumulation of calcium in the cell under both unstimulated and stimulated conditions. These results indicate that ACTH increases [Ca2+]c by cAMP-independent mechanism, that ACTH action on [Ca2+]c is exclusively dependent on extracellular calcium, and that quin2 is unable to detect the rapid change in [Ca2+]c because of its calcium chelating activity.  相似文献   

13.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

14.
T Yada  M Kakei  H Tanaka 《Cell calcium》1992,13(1):69-76
Since it was reported that glucose stimulation initially lowers as well as subsequently raises the cytosolic free calcium concentration [( Ca2+]i) in pancreatic islet cells from hyperglycemic ob/ob mice, it has been argued whether the lowering of [Ca2+]i is physiological or artifactual. In the present study, [Ca2+]i in single pancreatic beta-cells from normal rats was measured by Fura-2 microfluorometry. Following elevation of the glucose concentration from 2.8 mM (basal) to 16.7 mM, a bimodal change in [Ca2+]i, an initial decrease and subsequent increase, was demonstrated. When the basal glucose concentration was raised to 5.6 mM, the stimulation with 16.7 mM glucose also induced the decrease in [Ca2+]i in the majority of the cells, though the amplitude of the decrease was reduced. An elevation of the glucose concentration from 2.8 to 5.6 mM induced the decrease in [Ca2+]i but not usually the increase in [Ca2+]i. Removal of extracellular Ca2+ eliminated the increase in [Ca2+]i without affecting the decrease in [Ca2+]i. Thus, the decrease and increase in [Ca2+]i were clearly dissociated under certain conditions. In contrast, mannoheptulose (an inhibitor of glucose metabolism) inhibited both the decrease and increase in [Ca2+]i. These results demonstrate that the glucose-induced bimodal change in [Ca2+]i is a physiological response of islet beta-cells, and that the decrease and increase in [Ca2+]i are generated by mutually-independent mechanisms which are operated through glucose metabolism by islet beta-cells.  相似文献   

15.
Vasopressin (VP) release from the hypothalamo-neurohypophyseal system (HNS) is stimulated by ATP activation of P2X purinergic receptors and by activation of 1-adrenergic receptors by phenylephrine (PE). These responses are potentiated by simultaneous exposure to ATP+PE. Potentiation was blocked by depleting intracellular calcium stores with thapsigargin. To test the hypothesis that the synergistic response to ATP+PE reflects alterations in the intracellular calcium concentration ([Ca2+]i), [Ca2+]i was monitored in supraoptic neurons in HNS explants loaded with fura 2-AM. Both ATP and PE induced rapid, but transient, elevations in [Ca2+]i. In 0.3 mM Ca2+, the peak response to ATP was greater than to PE but did not differ from the peak response to ATP+PE. A sustained elevation in [Ca2+]i was induced by ATP+PE, that was greater than ATP or PE alone. In 2 mM Ca2+, the peak response to ATP+PE was significantly greater than to either ATP or PE alone, and the sustained response to ATP+PE was greater than to either agent alone. Responses were comparable in the presence of TTX. The sustained elevation in [Ca2+]i was also observed when ATP+PE was removed after 1 min, but it was eliminated by either thapsigargin or removing external calcium, indicating that both calcium influx and calcium release from internal stores are required. Some cells were vasopressinergic based on a VP-induced increase in [Ca2+]i. These observations support the hypothesis that simultaneous exposure to ATP+PE induces a different pattern of [Ca2+]i than either agent alone that may initiate events leading to synergistic stimulation of VP release.  相似文献   

16.
17.
Rat hepatocytes were studied for [Ca2+]i with Fura-2 at the single cell level using a microfluorometer-imaging system which showed that both the number of cells elevating [Ca2+]i and the magnitude of [Ca2+]i increase were directly dependent upon ethanol concentration between 50 mM and 1 M. Peak [Ca2+]i increases ranged from 27 nM with 50 mM ethanol to 57 nM after 1 M ethanol. Ethanol appeared to initiate calcium release from intracellular stores and caused a dose dependent production of inositol(1,4,5) triphosphate (Ins(1,4,5)P3) in hepatocytes. Low concentrations of ethanol (50-100 mM) did not significantly raise Ins(1,4,5)P3 although 300 mM-1 M increased Ins(1,4,5)P3 comparable to that found with vasopressin (5 nM). In summary, physiologic amounts of ethanol raise [Ca2+]i in rat hepatocytes, although at lower levels (50-100 mM) the changes may or may not be related to an Ins(1,4,5)P3 pathway.  相似文献   

18.
Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in cell suspensions. These results suggest that an increase in [Ca2+]i may be an early event in PAF activation of macrophages.  相似文献   

19.
The changes in intracellular Ca2+ concentration [( Ca2+]i) of hepatocytes induced by certain bile acids are biphasic: an initial increase is followed by a more gradual decrease. This latter decline in [Ca2+]i may be due to an efflux of Ca2+ across the plasma membrane. This hypothesis was tested by studying the effect of different bile acids on the efflux of 45Ca from preloaded rat hepatocytes and isolated perfused rat livers. The following bile acids were studied: cholic (C), ursodeoxycholic (UDC), chenodeoxycholic (CDC), and deoxycholic (DC) acids; their taurine (T) conjugates (TC, TUDC, TCDC, and TDC); and the taurine, sulfate (S), and glucuronide (Glu) derivatives of lithocholic acid (TLC, LS, TLS, and LGlu, respectively). At 0.3 mM, all bile acids except C, TC, TCDC, UDC, and TUDC significantly increased 45Ca efflux from preloaded hepatocytes without affecting cell viability. Dose-response studies revealed that the minimum effective concentration needed to induce 45Ca efflux was 0.06 mM for LS, 0.8 mM for TCDC, and 10 mM for TC. Efflux of 86Rb from preloaded hepatocytes was not significantly altered by 0.1 mM LS, indicating relative specificity for calcium. TDC and DC, but not TC, increased 45Ca efflux from preloaded perfused rat livers. These results showed that bile acids known to increase [Ca2+]i (CDC, DC, TDC, and TLC) also increased 45Ca efflux from hepatocytes and perfused livers and that efflux was also stimulated by LS, TLS, and LGlu. The extent of this efflux was related to the hydrophobicity of the steroid nucleus of the bile acid. It is speculated that bile acid-induced increases in [Ca2+]i activate the plasma membrane Ca2+ pump resulting in increased Ca2+ efflux.  相似文献   

20.
Potentiated contractions were evoked with rapid pace pause maneuver in 14 length-clamped ferret papillary muscles paced 12 times/min at 25 degrees C. At 1.25 mM [Ca2+]o the average steady-state force was 2.94 +/- 1.08 g/mm2 and the potentiated contraction averaged 10.96 +/- 1.61 g/mm2. At 5.0 mM [Ca2+]o the steady-state force increased to 6.18 +/- 1.23 g/mm2 and the potentiated contraction averaged 12.08 +/- 1.15 g/mm2. Under the conditions of these experiments the potentiated contraction obtained at 5.0 mM [Ca2+]o is equal to the maximum twitch tension (Fmax) these muscles can generate. We have previously shown that Fmax is an equivalent of maximal calcium activated force. Since there is a beat to beat nearly exponential decay of the evoked potentiation, the fraction (= fraction x) of the potentiation that is not dissipated with each beat is nearly constant. Using an excitation-contraction coupling model we have previously found that x reflects a measure of the recirculating fraction of activator calcium. Because the tension-calcium relationship is better characterized by a sigmoidal curve, we have now incorporated the Hill equation in the model. To account for the inverse relationship between [Ca2+]i and the magnitude of the slow inward current, a term for negative feedback (h) was also included. We have determined the quantity (x-h) because x and h could not be determined separately. The quantity (x-h) was denoted as x'. The average values of x' at 1.25 and 5.0 mM [Ca2+]o were significantly different (p less than 0.0001), approximately 20% at the lower [Ca2+]o and about 50% at the higher [Ca2+]o.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号