首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over many centuries, chestnut fruits had an important role as food, while chestnut wood was used for local purposes. Today sweet chestnut stands are very common around the western Mediterranean Basin, and it is necessary to analyze the dynamic of plant species diversity in different chestnut stand types (groves and coppices) to guide management strategies that will allow the conservation of biodiversity. Our objective was to analyze consequences on plant species diversity of various management strategies in chestnut stands of three Mediterranean areas, Salamanca (Spain), the Cévennes (France), and Etna volcano (Italy). We found that plant species diversity is different according to management types; it is higher in groves than in coppice stands. We also demonstrated that Castanea sativa cultivated groves were characterized by small heliophillous therophytes. C. sativa abandoned groves, mixed C. sativa–Quercus pyrenaica coppice stands, Q. pyrenaica coppice stands, and young C. sativa coppice stands were characterized by hemicryptophytes with anemochorous dispersal mode and chamaephytes. Medium and old C. sativa coppice stands (that differ by the shoot age) were characterized by phanerophytes with zoochorous dispersal mode. Human perturbations maintain a quite high level of species diversity. In contrast, the abandonment of chestnut stands leads to homogeneous vegetation with decreasing diversity. One solution could be to maintain a landscape mosaic constituted of diverse chestnut stands modified by human activities (groves, cultivated or abandoned, and coppice stands). This could enhance regional plant diversity.  相似文献   

2.
Shoots of the monocotyledonous perennial Carex acutiformis were grown in open (28 shoots m−2) and dense stands (280 shoots m−2). For fully grown stands the distribution of relative PPFD and leaf nitrogen per unit leaf area over canopy depth was determined. Light response of photosynthesis was measured on leaf segments sampled at various heights in the stands. Relations between parameters of these curves and leaf nitrogen were investigated. Simulations showed that in the open stand daily canopy photosynthesis was not affected by nitrogen redistribution in the canopy. For the dense stand however, a uniform nitrogen distribution would lead to only 73% of the maximum net carbon gain by the stand under optimal nitrogen distribution. The actual canopy photosynthesis was only 7% less than this theoretical maximum; the actual nitrogen distribution of the dense stand clearly tended to the optimal distribution. The vertical pattern of the nitrogen distribution was to a large extent determined by the minimum leaf nitrogen content. The relatively high minimum leaf nitrogen content found for Carex leaves may perhaps be necessary to maintain the physiological function of the basal parts of the leaves.  相似文献   

3.
Ecological studies were made on the structure and phytomass of the secondary coppice forest near Tokyo, which was dominated by a deciduous oak,Quercus serrata Thunb. Average height of dominant trees was about 10 m. The shoot density at the beginning of the study was 4,600 ha−1 of which 89.5% belonged toQ. serrata. During the subsequent two growing seasons 8.3% of shoots, mainly small ones, died. All the tree shoots in a 10 m×10 m quadrat were cut and most of the underground parts were dug out. The phytomass calculated by the allometric relations of the dry weight of each plant organ to the square of DBH (D 2) agreed fairly well with the values directly weighed. The average phytomass of the overstory trees was 906 kg a−1. The leaf area index (LAI) of the canopy was 3.85. Phytomass of the undergrowth, mainly a dwarf bamboo,Pleioblastus chino Makino, was 91.8 kg a−1 with LAI of 3.46. The dead phytomass in the stand was 177 kg a−1, so the phytomass alive and dead amounted to 1,170 kg a−1. Heavy self-thinning of the coppice forest is discussed in relation to the rapid development of the log-normal distribution of tree sizes and to the large allometric constants for leaf and branch weight toD 2.  相似文献   

4.
Mechanisms which enableReynoutria japonica, a dominant pioneer herb, to be successful in maintaining large stands in an oligotrophic volcanic desert on Mt Fuji were investigated with special reference to its nitrogen acquisition.Reynoutria japonica forms circular stands, each of which comprises only one genet. As a stand develops outwards, the number of aerial shoots per unit area decreases in the center. Shoots grow vigorously in the peripheral area where the available nitrogen from soil and precipitation (about 2.4 g m−2 year−2) was much less than total nitrogen in the shoots (6.1–9.1 g m−2). Leaf nitrogen content per unit mass was also greater in the leaves of the peripheral shoots. When rhizomes extending radially from the center to the periphery were severed, the dry mass of shoots in the periphery diminished by 75% on a ground area basis. In the periphery, leaf nitrogen content also reduced significantly and no flowers were produced. When fertilizer was applied to the peripheral shoots with severed rhizomes, neither growth, survival nor flower production of the shoots was significantly smaller than the control levels. In these shoots, it is also found that the nitrogen content in the youngest leaves decreased for about 1 month and then increased to above that in the control leaves. These results suggest that (i) nitrogen accumulated in the central part is translocated to peripheral shoots via rhizomes, and that long-distance translocation enables the stands to develop outwards, and (ii) aerial shoots in the periphery utilize the nitrogen translocated by rhizomes in the beginning of the growth season, whereas once the shoots have established, they begin to take up nitrogen with their own roots. Since the peripheral shoots are in sunnier environments than the shoots inside the stand, the acropetal nitrogen translocation via rhizomes will raise the production efficiency of a whole stand.  相似文献   

5.
This study examined the nitrogen (N) dynamics of a black spruce (Picea mariana (Mill.) BSP)-dominated chronosequence in Manitoba, Canada. The seven sites studied each contained separate well- and poorly drained stands, originated from stand-killing wildfires, and were between 3 and 151 years old. Our goals were to (i) measure total N concentration ([N]) of all biomass components and major soil horizons; (ii) compare N content and select vegetation N cycle processes among the stands; and (iii) examine relationships between ecosystem C and N cycling for these stands. Vegetation [N] varied significantly by tissue type, species, soil drainage, and stand age; woody debris [N] increased with decay state and decreased with debris size. Soil [N] declined with horizon depth but did not vary with stand age. Total (live + dead) biomass N content ranged from 18.4 to 99.7 g N m−2 in the well-drained stands and 37.8–154.6 g N m−2 in the poorly drained stands. Mean soil N content (380.6 g N m−2) was unaffected by stand age. Annual vegetation N requirement (5.9 and 8.4 g N m−2 yr−1 in the middle-aged well- and poorly drained stands, respectively) was dominated by trees and fine roots in the well-drained stands, and bryophytes in the poorly drained stands. Fraction N retranslocated was significantly higher in deciduous than evergreen tree species, and in older than younger stands. Nitrogen use efficiency (NUE) was significantly lower in bryophytes than in trees, and in deciduous than in evergreen trees. Tree NUE increased with stand age, but overall stand NUE was roughly constant (∼ ∼150 g g−1 N) across the entire chronosequence.  相似文献   

6.
The effects of stock-plant etiolation on coppice-shoot growth, drifts in total soluble sugars and anthraquinones (AQs; C14H8O2), and rooting potentiality of shoot cuttings were examined in Tectona grandis L. f. (clone FG1). When seedlings were one-year-old, they were coppiced and maintained in the dark for etiolation, with a parallel set kept under natural light in an open environment. Coppice shoots were made into single-node leafy cuttings (SNCs), which were cultured under intermittent mist for rooting. These SNCs were treated with different concentrations of NAA (0, 2000 and 3000 mg l−1). Etiolation significantly increased the coppice-shoot length, internode length, number of coppice shoots, number of leaves, number of nodes and total soluble sugars. The HPTLC analysis showed qualitative and quantitative differences in AQs in coppice shoots obtained from etiolated and non-etiolated stock plants. The study showed that AQs could be used as a marker for maturity and juvenility in teak. Stock-plant etiolation caused a significant increase in percent rooting and sprouting, shoot length, number of shoots and number of leaves per SNC, but a decrease in callusing at the base of the SNC. NAA at 2000 and 3000 mg l−1 had inhibitory effects on rooting and sprouting of SNCs. The result showed that stock-plant etiolation fostered rooting by rejuvenating the coppice shoots.  相似文献   

7.
Floral composition and structural parameters of the herbaceous vegetation of four recovering tropical dry deciduous forest stands protected for 2, 4, 6 and 10-year periods, on the Eastern Ghats of India, situated at Kandhamal district of Orissa, India were investigated. More than 1 ha of recovering forest stands of each of the four stages was selected and fifteen sample quadrats of 1 m × 1 m were randomly placed at each stand for vegetation analysis. Floristic analysis revealed highest number of species (69) in 2-year recovering stand, which declined with increase in age. A total of 87 species, 71 genera and 32 families were recorded in the forest stands. Total number of herbaceous species encountered in the stands was 44, 28, 30 and 24 in 2, 4, 6 and 10-year stands, respectively. Total individuals of all herb species were 114, 70, 88 and 68 plant m−2 in 2, 4, 6 and 10-year stands, respectively. Herbaceous stand basal areas were 7.84, 3.66, 4.77 and 5.23 cm2 m−2 in 2, 4, 6, and 10-year stands, respectively. Importance value index (IVI) revealed that Heteropogon contortus was predominant in 2 and 4-year stands, Andrographis paniculatus in 6-year stand and Elephantopus scaber in 10-year stand. Diversity-dominance curve revealed lognormal distribution in all the four stands. Simpson’s dominance index (C) was highest in 2-year stand which decreased in other stands, while Shannon’s diversity index (H1) was almost the same in all the stands. Biomass of herbaceous vegetation was 83.2 g m−2 in 2 year, 62.2 g m−2 in 4 year, 58.0 g m−2 in 6 year and 64.0 g m−2 in 10-year stand.  相似文献   

8.
The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the “lichen” site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6–10 kgdw m−2 after 200 years depending on stand density and fire history compared to 20 kgdw m−2 in the “Vaccinium” type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5–1.5 and crown cover was 30–60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope −0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes. Received: 2 July 1998 / Accepted: 10 June 1999  相似文献   

9.
Holzmueller EJ  Jose S  Jenkins MA 《Oecologia》2008,155(2):347-356
Exotic diseases have fundamentally altered the structure and function of forest ecosystems. Controlling exotic diseases across large expanses of forest has proven difficult, but fire may reduce the levels of diseases that are sensitive to environmental conditions. We examined Cornus florida populations in burned and unburned QuercusCarya stands to determine if burning prior to anthracnose infection has reduced the impacts of an exotic fungal disease, dogwood anthracnose, caused by Discula destructiva. We hypothesized that fire has altered stand structure and created open conditions less conducive to dogwood anthracnose. We compared C. florida density, C. florida health, and species composition and density among four sampling categories: unburned stands, and stands that had burned once, twice, and 3 times over a 20-year period (late 1960s to late 1980s). Double burn stands contained the greatest density of C. florida stems (770 stems ha−1) followed by triple burn stands (233 stems ha−1), single burn stands (225 stems ha−1) and unburned stands (70 stems ha−1; P < 0.01). We observed less crown dieback in small C. florida trees (<5 cm diameter at breast height) in burned stands than in unburned stands (P < 0.05). Indicator species analysis showed that burning favored species historically associated with QuercusCarya forests and excluded species associated with secondary succession following nearly a century of fire suppression. Our results suggest that fire may mitigate the decline of C. florida populations under attack by an exotic pathogen by altering forest structure and composition. Further, our results suggest that the burns we sampled have had an overall restorative effect on forest communities and were within the fire return interval of the historic fire regime. Consequently, prescribed fire may offer a management tool to reduce the impacts of fungal disease in forest ecosystems that developed under historic burning regimes.  相似文献   

10.
The competition density effect and changes of mean total tree weight (w) and stand density (ρ) during course of self-thinning were examined in even-aged pure stands ofEucalyptus camaldulensis Dehn. which were planted in the tropical monsoon region. The level of competition was controlled by changing the initial stand density from 625 trees ha−1 to 40,000 trees ha−1. Hozumi's model was used to describe thew-ρ trajectory with aging of each stand and thew-ρ relation between stands of different densities at each time. The higher density produced trees of smaller mean tree sizes. The higher the density, the sooner self-thinning began. The growth curve ofE. camaldulensis followed the logistic growth curve where both maximum size and intrinsic growth rate change with time. Mean intrinsic growth rate was maximized at initiation of growth after lag time and then gradually decreased as time progressed. Hozumi's model was considered to be the best model with wide applicability for describing and comparing the growth characteristics during the course of self-thinning among different species, especially in tropical forest plantations, in which many diverse species were used for reforestation.  相似文献   

11.
Recent land-use changes in intensively managed forests such as Mediterranean coppice stands might profoundly alter their structure and function. We assessed how the abandonment of traditional management practices in coppice stands, which consisted of short cutting-cycles (10–15 years), has caused overaging (stems are usually much older than when they were coppiced) and altered their wood anatomy and hydraulic architecture. We studied the recent changes of wood anatomy, radial growth, and hydraulic architecture in two stands of Quercus pyrenaica, a transitional Mediterranean oak with ring-porous wood forming coppice stands in W–NW Spain. We selected a xeric and a mesic site because of their contrasting climates and disturbance histories. The xeric site experienced an intense defoliation after the severe 1993–1994 summer drought. The mesic site was thinned in late 1994. We studied the temporal variability in width, vessel number and diameter, and predicted the hydraulic conductivities (K h) of earlywood and latewood. In the mesic site, we estimated the vulnerability to xylem cavitation of earlywood vessels. Overaging caused a steep decline in latewood production at a cambial age of 14 years., which was close to the customary cutting cycle of Q. pyrenaica. The diameter distribution of vessels was bimodal, and latewood vessels only accounted for 4% of the K h. Overaging, acting as a predisposing factor in the decline episode, was observed at the xeric site, where most trees did not produce latewood in 1993–1995. At the mesic site, thinned trees formed wider tree-rings, more latewood and multiseriate tree-rings than overaged trees. The growth enhancement remained 8 years after thinning. Most of the hydraulic conductivity in earlywood was lost in a narrow range of potentials, between −2.5 and −3.5 MPa. We have shown how hydraulic conductivity and radial growth are closely related in Q. pyrenaica and how aging modulates this relationship.  相似文献   

12.
Robinia pseudoacacia, a nitrogen-fixing, clonal tree species native to the central Appalachian and Ozark Mountains, is considered to be one of the top 100 worldwide woody plant invaders. We initiated this project to determine the impact of black locust (Robinia pseudoacacia) on an upland coastal ecosystem and to estimate the spread of this species within Cape Cod National Seashore (CCNS). We censused 20 × 20 m plots for vegetation cover and environmental characteristics in the center of twenty randomly-selected Robinia pseudoacacia stands. Additionally, paired plots were surveyed under native overstory stands, comprised largely of pitch pine (Pinus rigida) and mixed pitch pine–oak (Quercus velutina and Quercus alba) communities. These native stands were located 20 m from the edge of the sampled locust stand and had similar land use histories. To determine the historical distribution of black locust in CCNS, we digitized and georeferenced historical and current aerial photographs of randomly-selected stands. Ordination analyses revealed striking community-level differences between locust and pine–oak stands in their immediate vicinity. Understory nonnative species richness and abundance values were significantly higher under Robinia stands than under the paired native stands. Additionally, animal-dispersed plant species tended to occur in closer stands, suggesting their spread between locust stands. Robinia stand area significantly decreased from the 1970’s to 2002, prompting us to recommend no management action of black locust and a monitoring program and possible removal of associated animal-dispersed species. The introduction of a novel functional type (nitrogen-fixing tree) into this xeric, nutrient-poor, upland forested ecosystem resulted in ‘islands of invasion’ within this resistant system.  相似文献   

13.
微地形对大西沟新疆野杏萌发层土壤因子的影响   总被引:3,自引:0,他引:3  
野杏是新疆野果林的主要建群种和种质资源树种。野杏在种子萌发成苗期,幼苗的根系主要分布在0—15 cm土层中。为了阐明坡向、坡位、坡度和坡形等微地形因子对野杏种子萌发层土壤特征和养分分布的影响,在新疆伊犁州霍城县大西沟的封育野果林内(44°26′01.09″—44°26′17.12″N,80°46′27.49″—80°47′03.26″E)设置样地,测定0—15 cm土层的土壤砾石、酸碱值、有机质和全氮、全磷、全钾、水解性氮、有效磷和速效钾含量,分析各土壤因子和地形因子的关系。结果表明:(1)东北坡土壤养分含量较高,其土壤砾石含量、酸碱值、有机质、全磷、水解性氮和速效钾含量与东南坡、南坡皆存在显著差异(P0.05),阴坡的土壤有机质、全氮、有效磷和速效钾含量都高于阳坡,不同坡向的土壤特征和养分分布存在显著差异(P0.05);(2)不同坡位的土壤有机质、全氮、全磷和有效磷含量均表现为中坡位下坡位上坡位,土壤砾石、全钾和速效钾含量均呈现上坡位中坡位下坡位,全钾、全磷和有效磷含量在同坡位分布较均匀,不同坡位的土壤特征和土壤养分分布无显著差异(P0.05);(3)不同坡度下的土壤水解性氮和有效磷含量是缓坡中坡缓中坡陡坡,土壤砾石、酸碱值、全氮、水解性氮、有效磷和速效钾含量有显著差异(P0.05),陡坡土壤有机质、全氮、水解性氮和有效磷含量均低于其他坡度,而土壤砾石、土壤酸碱值和全钾在陡坡土层中含量最高,缓坡与缓中坡的土壤养分含量丰富,陡坡较为贫瘠,坡度对土壤特征和土壤养分分布有显著影响(P0.05);(4)不同坡形下的土壤砾石、全钾、水解性氮、有效磷和速效钾含量是凸形坡凹形坡直线坡,不同坡形下的土壤特征和土壤养分(除全钾和速效钾)均存在显著差异性(P0.05)。野果林地形因子对野杏萌发层土壤特征和土壤养分分布有显著影响,东北坡、中坡位、缓坡和凸形坡土壤养分含量较为丰富,是适宜野杏萌发的地形。研究结果可为探究影响野杏种子萌发和生长的气候与土壤水热等因子奠定良好基础。  相似文献   

14.
Morphological plasticity was studied for advanced regeneration trees in different light environments of the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were very shade tolerant silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.), and midtolerant Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected for measurements in different stands from two different geographical locations. Various morphological traits (specific leaf area, live crown ratio, crown width to length ratio, terminal to lateral ratio, number of internodal shoots, number of shoots in terminal whorl, stem symmetry, stem orientation, stem forking) for each regenerating tree were measured during summers of 2001 and 2002. Percentage of above canopy light and stand basal area measures were used to assess the available growing space for each seedling/sapling. Regression relationships were developed for the different morphological indicators as a function of these two variables. All species adapted their morphology along the gradient in light and basal area. Spruce seemed to be less adapted to low light conditions than both fir and beech. However, no significant differences in terms of shade tolerance were detected using the above indicators. In really dense stand conditions (less than 20% above canopy light and stand basal area above 36 m2 ha−1), probability for stem forking in beech increased. In open, all three species adapted their morphology for vigorous growth. Under such conditions, spruce was better adapted than fir.  相似文献   

15.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

16.
Early post-fire vegetation dynamics following large, severe forest fires are largely unknown for the southern California mountains owing to historic fire suppression. Vegetation in 38 forest stands was surveyed (2004, 2005, and 2007) following the 2003 Cedar Fire in the Cuyamaca Mountains, Peninsular Ranges, San Diego County, California, USA. Each stand was sampled using four 10-m radius plots for the tree stratum, and 20 1-m2 quadrats for shrub and herb strata. Changes in canopy cover by species, origin (native and exotic) and life form were analyzed. 2007 data were subjected to clustering to examine the divergence in species composition of the stands with time. Shrub cover increased from 3 to 31%, and exotic herbaceous cover increased from 3 to 40%. Cover of native annuals had increased from 2004 (17%) to 2005 (33%), but then dropped to 15% in 2007. Forty percent of the stands were dominated by the shrub species Ceanothus palmeri, and associated with higher pre-fire conifer cover and fire severity. More than 50% of the stands were dominated by exotic annuals and associated with lower fire severity and less steep slopes. The remaining stands (<10%) were dominated by chaparral shrubs and occurred on lower elevation, steep west-facing slopes. Species traits predict their dynamics following disturbance, as environmental conditions change. Establishment and increasing abundance of species dependent on dispersal to reach a site, including exotic and native herbaceous species, occurred in years 2–4. Differences among stands in species composition 4 years post-fire were associated with topographic and fire severity gradients.  相似文献   

17.
Biomass and net production were measured in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, which had carried out gregarious flowering in 1969 and has been recovering vegetatively. The culm density fluctuated around an average value of 12 040 ha−1 during the research period (1985–91). Annual recruirment and mortality rates of culms were 1340 and 1133 ha−1, respectively. The mean diameter at breast height increased from 7.28 cm in 1985 to 8.68 cm in 1991, and the biomass of culms increased from 71.3 to 111.6t ha−1 over the same time period. Branch and leaf biomasses were almost constant, 10.0 and 9.4t ha−1 on average, respectively. The leaf area index of the stand was 11.6 ha ha−1, which is one of the largest values found in Japanese forests. The belowground biomass of 32.6t ha−1 for rhizomes and 14.8t ha−1 for fine roots resulted in the smaller ratio of aboveground parts to the root system (2.38) than those determined for forest stands. The amount of litterfall, excluding culms and large branches, was large (9.13t ha−1 year−1), corresponding to those measured in equatorial stands. The aboveground net production was 24.6t ha−1 year−1, larger than the average value reported for forest stands under similar weather conditions.  相似文献   

18.
J. Fanta 《Plant Ecology》1981,44(1):13-24
Summary In the Central Europaean mountain ranges, the alpine timberline is usually formed by Picea abies or by other conifers (Larix decidua, Pinus mugo, Pinus cembra). Unlike in the East Europaean mountains, the Balkan Peninsula, the Europaean Mediterranean and Les Vosges, Fagus silvatica occurs sporadically on the alpine timberline in this area where it forms very specific woods.This type of the alpine timberline is bound to the association Aceri-Fagetum (Bartsch 1940, Moor 1952). This association is found on the highest sites of the Fagion alliance in the subalpine vegetation zone. Within this zone, the association is bound to localities with heavy snowfall and a submaritime climat. It occupies larger areas in the Swiss Jura and in Les Vosges. In other Central Europaean mountains (the Alps, Schwarzwald, Krkonoe etc.) it occus in isolated areas only.Many trunk deformations and bush forms are found with Fagus on a large scale in the snow impacted localities (steep slopes, periphery of corries, avalanche slopes etc.). Crawling and sliding snow causes these growth deformations in the Fagus seedlings since their first year.The general increase of the vegetative propagation is a remarkable and exceptional response of Fagus in adapting to these extreme growth conditions. Under alpine timberline conditions, the generative propagation is very limited.The vegetative shoots with adventitious root systems are formed mainly from branches layering in the humus. The typical monocormonal tree-form of Fagus from lower altitudes turns in this way into a polycormon. From an evolutionary point of view, it is a suitable substitution; but from the ecological viewpoint, however, it is a sturdy growth form. In its typical form, the polycormon is formed by a number of vegetative shoots, which may be deformed but are very elastic and resistent. The number of shoots in a polycormon varies from 3–5 below, and up to 40–50 at and above the timberline. They are formed by shoots of a number of filial successions. The decay of a polycormon results from decreasing vitality of single shoots or, very often, it is caused by the impact of snow and ice. Considering, however, the fact that single shoots have a sufficient adventitious root system and are thus physiologically independent, the dying of the other shoots does not mean a danger for the existence of the remaining part of the polycormon. The age of a polycormon as a whole is difficult to determine. Fagus polycormons can be considered as a typical growthform of the highest sites of the association Aceri-Fagetum. No other tree species is able to form close stands under these conditions. This phenomenon is of primary importance for the existence of this plant community.The unusual character of the structure and dynamics of the highest Aceri-Fagetum stands gives rise to a special type of the alpine timberline which should be understood not as a line but as a transitional zone between the closed stands and the hon-wooded plant communities of the subalpine vegetation zone. The dynamic succession of the Fagus polycormons guarantees the stability of the Fagus stands forming the alpine timberline.
Fagus silvatica L. und das aceri-fagetum an der alpinen Waldgrenze in Mitteleuropäischen gebirgen
  相似文献   

19.
Summary Dendrobium candidum Wall. Ex Lindl. is an important species used in the formulation of Shih-hu, a Chinese traditional medicine. An efficient protocol for in vitro propagation of D. candidum using the axenic nodal segments of the shoots, originated from the in vitro germinated seedlings, was developed. The seeds from 120-d-old capsules after pollination were first germinated on half-strength Murashige and Skoog (MS) basal medium supplemented with 30 g l−1 sucrose. After 4 mo., the seedlings were subcultured on a similar medium supplemented with 1 ml l−1 HYPONeX, 80 g l−1 potato homogenate and 2 g l−1 activated charcoal for further growth. Axenic nodal segments excised from 9-mo.-old seedlings were cultured on the medium in the presence of 2 mg l−1 benzyladenine (BA) and 0.1 mg l−1 naphthaleneacetic acid (NAA). After 75 d, 73.2% of the explants gave rise to buds/shoots. The elongated shoots were rooted on the medium containing 0.2 mg l−1 NAA and the plantlets were successfully acclimatized in soil.  相似文献   

20.
Rank correlations between tree species diversity in forest stands and parameters of landscape pattern were calculated using data from 4933 locations in Otepää Nature Park. Stand diversity was characterised by the number of tree species in the stand formula and by the index of dominance of tree species’ coverage. Landscape diversity was characterised by locally calculated pattern parameters from three categorical map layers (1:10 000 base map, 1:10 000 soil map, combination of these maps) and from six numerical variables (elevation, slope angle, four channels of a Landsat 7 ETM image).A weak trend appeared for more diverse forest stands to be located in more diverse landscapes according to the base map. Forest stand diversity is also higher on steeper slopes and in places surrounded by slopes of varying steepness. The correlation between landscape diversity and biodiversity depends on the radius of the kernel in which landscape characteristics are calculated. Evidence of an indicative neighbourhood could be seen in many spatial relationships. The spatial correlation between stand diversity and indices calculated from the base map was most visible at distances ranging from 400 to 500 m; surface elevation and its variation correlates with stand diversity at distances of 100–200 m. Some relationships between forest diversity and landscape diversity that had a different sign of correlation in proximate and distant kernels can be interpreted as a need to standardise local landscape indices with the index values in a wider neighbourhood as a reference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号