首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The solution distribution of combinations of the sugar ring puckering domains, C2′endo(S), C3′endo(N), and C4′-C5′ rotamers, +sc(g+), ap(t), -sc(g?), in α and β-anomers in ribo- and deoxyribo- pyrimidine nucleic acid components can be determined from vicinal coupling constants (M. Remin, J. Biomol. Str. Dyn. 2, 211 (1984). A general correlation pattern with a conformational constant λ, reflecting an intrinsic physical property of the sugar - side chain ensemble, is developed and expressed in terms of four principles:

I) The +sc rotamer contributes to the C3′endo population to a higher extent (1 - Yt) than to C2′endo,(l-Yt-Yg-/Xs).

II) The ap rotamer contributes to both C2′endo and C3′endo populations to the same extent (Yt).

III) The—sc rotamer contributes only to the C2′endo population, (Yg-/Xs).

IV) The molar fractions Xs, Yt and Yg- of conformations C2′endo, ap and—sc, respectively, are strongly correlated, λ = (Yg-/Xs)/Yt ≈ 0.5, and therefore Yt is a basic variable parameter which determines all others in the correlation pattern.

In α-anomers, regardless of the type and conformation of the sugar ring and base, the molar fraction Yt = 0.37 ± 0.02. This finding means that different α-anomers show one correlation pattern free of the influence of the base. In β-anomers, structure and conformation of the base are important factors which modulate (through Yt) the correlation pattern, conserving its fundamental features. Yt is considerably increased by a syn-oriented pyrimidine base, but decreases when the base is anti. The transition from anti to syn orientation of the base is followed by destabilization of (C2′endo, +sc) in favor of (C3′endo, ap). The principles of conformational correlations rationalize a variety of correlations observed in the past.  相似文献   

2.
This work is concerned with the growth of age-structured populations whose vital rates vary stochastically in time and with the provision of confidence intervals. In this paper a model Yt + 1(ω) = Xt + 1(ω)Yt(ω) is considered, where Yt is the (column) vector of the numbers of individuals in each age class at time t, X is a matrix of vital rates, and ω refers to a particular realization of the process that produces the vital rates. It is assumed that {Xi} is a stationary sequence of random matrices with nonnegative elements and that there is an integer n0 such that any product Xj + n0 ··· Xj + 1Xj has all its elements positive with probability one. Then, under mild additional conditions, strong laws of large numbers and central limit results are obtained for the logarithms of the components of Yt. Large-sample estimators of the parameters in these limit results are derived. From these, confidence intervals on population growth and growth rates can be constructed. Various finite-sample estimators are studied numerically. The estimators are then used to study the growth of the striped bass population breeding in the Potomac River of the eastern United States.  相似文献   

3.
Let X and Y be two random variables with continuous distribution functions F and G. Consider two independent observations X1, … , Xm from F and Y1, … , Yn from G. Moreover, suppose there exists a unique x* such that F(x) > G(x) for x < x* and F(x) < G(x) for x > x* or vice versa. A semiparametric model with a linear shift function (Doksum, 1974) that is equivalent to a location‐scale model (Hsieh, 1995) will be assumed and an empirical process approach (Hsieh, 1995) is used to estimate the parameters of the shift function. Then, the estimated shift function is set to zero, and the solution is defined to be an estimate of the crossing‐point x*. An approximate confidence band of the linear shift function at the crossing‐point x* is also presented, which is inverted to yield an approximate confidence interval for the crossing‐point. Finally, the lifetime of guinea pigs in days observed in a treatment‐control experiment in Bjerkedal (1960) is used to demonstrate our procedure for estimating the crossing‐point. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A group of n susceptible individuals exposed to a contagious disease isconsidered. It is assumed that at each point in time one or more susceptible individuals can contract the disease. The progress of this simple batch epidemic is modeled by a stochastic process Xn(t), t[0, ∞), representing the number of infectiveindividuals at time t. In this paper our analysis is restricted to simple batch epidemics with transition rates given by [α2Xn(t){nXn(t) +Xn(0)}]1/2, t[0, ∞), α(0, ∞). This class of simple batch epidemics generalizes a model used and motivated by McNeil (1972) to describe simple epidemic situations. It is shown for this class of simple batch epidemics, that Xn(t), with suitable standardization, converges in distribution as n→∞ to a normal random variable for all t(0, t0), and t0 is evaluated.  相似文献   

5.
A continuous time discrete state cumulative damage process {X(t), t ≥ 0} is considered, based on a non‐homogeneous Poisson hit‐count process and discrete distribution of damage per hit, which can be negative binomial, Neyman type A, Polya‐Aeppli or Lagrangian Poisson. Intensity functions considered for the Poisson process comprise a flexible three‐parameter family. The survival function is S(t) = P(X(t) ≤ L) where L is fixed. Individual variation is accounted for within the construction for the initial damage distribution {P(X(0) = x) | x = 0, 1, …,}. This distribution has an essential cut‐off before x = L and the distribution of LX(0) may be considered a tolerance distribution. A multivariate extension appropriate for the randomized complete block design is developed by constructing dependence in the initial damage distributions. Our multivariate model is applied (via maximum likelihood) to litter‐matched tumorigenesis data for rats. The litter effect accounts for 5.9 percent of the variance of the individual effect. Cumulative damage hazard functions are compared to nonparametric hazard functions and to hazard functions obtained from the PVF‐Weibull frailty model. The cumulative damage model has greater dimensionality for interpretation compared to other models, owing principally to the intensity function part of the model.  相似文献   

6.
For the usual full rank univariate least squares regression model y = XB + e, E(e) = 0, E(ee) = A, the equality of the estimates occurs when B-B* = (XA?1X)?1XA-1y-(XX)?1Xy = 0. A necessary and sufficient condition for this equality is that A has some N - k + 1 roots equal where N is the rank of A and k is the rank of X.  相似文献   

7.
Abstract

The noncovalent interactions of phytate (Phy6-) with biogenic amines were studied potentiometrically in aqueous solution, at t= 25°C. Several species are formed in the different H+-Phy6--amine (A) systems, which have the general formula Ap(Phy)Hq(12-q)-, with p ≤ 3 and 6 ≤ q ≤ 10. The stability of these species is strictly dependent on the charges involved in the formation equilibria. For the equilibrium pHiAi+ + Hj(Phy)(12-j)- = Ap(Phy)Hq(12q)-, (q = pi + j)we found the relationship logK= aζ (ζ is the charge product of reactants), where a= 0.35(0.03, valid for all the amines; this roughly indicates an average free energy contribution per bond -ΔG0 = 4.0 ± 0.2 kJ mol-1. A slightly more sophisticated equation is also proposed for predicting the stability of these species. Owing to the quite high (partially protonated) phytate charge, the stability of Ap(Phy)Hq(12-q)- species is quite high, making phytate a strong amine sequestering agent in a wide pH range.  相似文献   

8.
This is the first part of a survey of hierarchical clustering algorithms using joining methods: the Single-Linkage algorithm. Complete-Linkage and general algorithms defined by d(Ai, B) = = α,d(Ai, Ar)±αsd(Ai, As)±βd(Ar, As) will be discussed in two subsequent papers.  相似文献   

9.
A specific regular inbreeding system of quadruple half-second cousin mating is considered. A regular inbreeding system can be thought of as a graph which satisfies certain natural homogeneity properties. Random walks X n and Y n are introduced on the nodes of the graph; the event {X n=Yn} is a renewal event by the homogeneity properties. In Arzberger (1985) it is shown that 1) graphs associated with left cancellative semigroups are regular, and 2) for regular systems, the population becomes genetically uniform if and only if the event {X n=Yn} is recurrent. In Arzberger (1986) the system of quadruple half-second cousin mating is associated with a cancellative semigroup, thus the system is regular. In this paper we show that 1) An is asymptotically of the form cn 3, where A n is the number of ancestors n generations into the past, 2) {X n=Yn} is not recurrent (this is shown by associating (X n, Y n) with a random walk in Z 3, 3) P[X 3n =Y 3n ] is asymptotically of the form cn –3/2. Thus, in this example, genetic heterogeneity is maintained, with a cubic rate of growth for An, not by an exponential growth rate, as in all previous examples of regular inbreeding systems in which genetic heterogeneity is maintained.  相似文献   

10.
A mathematical model for the design of bubble-columns for growth of shear-sensitive insect cells is presented. The model is based on two assumptions. First, the loss of cell viability as a result of aeration is a first-order process. Second, a hypothetical volume X, in which all viable cells are killed, is associated with each air bubble during its lifetime. The model merely consists of an equation for k d, the first-order death-rate constant, and A min, the minimum specific surface area of the air bubbles to supply sufficient oxygen. In addition to X, the equation for k d contains the air flow F, the air-bubble diameter d b, the diameter D and the height H of the bubble column. This equation has been experimentally validated. Comparison of the equations for k d and A min shows that especially H is the key parameter to manipulate in bubble-column design in order to meet the demands set by A min and k dg, the first-order growth-rate constant. It is concluded that net growth of cells is enhanced as size and height of the bubble column increase.  相似文献   

11.
Various reports have been published regarding quantitative evaluations of intraoperative fluorescent intensity studies using indocyanine green (ICG) with videoangiography (VAG). The effects of scattering and point‐spread functions (PSF) on quantitative ICG‐VAG evaluations have not been investigated. Clinically, when ICG is administered through the peripheral vein, it reaches the tissue intra‐arterially. To achieve more reliable intraoperative quantitative intensity evaluations, we examined the impact of high‐intensity structures on close areas. The study was conducted using a phantom model and surgical fluorescent microscope. A region of interest (ROI) was created for the vessel model and another ROI was created within 3 cm of that. With an ROI of 6.8 mm in the vessel phantom model, 10% intensity was confirmed, even though there was no fluorescent structure. Intensity decreased gradually as the ROI moved further from the vessel model. Our study results suggest that the presence of a high‐intensity structure and the size of the ROI may affect quantitative intensity evaluations using ICG‐VAG. Results of linear regression analysis indicate that the relationship of intensity (Y) and distance (X) is as follows: Y(real/A) = 29 Exp(?0.062X) + 164.3 Exp(?1.81X). The optical effect should be considered when performing an intraoperative intensity study with a surgical microscope.   相似文献   

12.
Thus far an individual height growth curve hij(t) of the i-th person in the j-th period, t being his (or her) age, has been studied as a function of t associated with its velocity curve. In this note we introduce a natural scale X(t) in place of t, which linearizes this personal curve and facilitates its analysis, in the sense that this equation of growth contains apparently two personal parameters for one period but one of them plays an essential role. The effectiveness of this approach will be seen in four figures.  相似文献   

13.
The conditions under which the output,γ b (t), of a biological system is related to the input,γ a (t), by an integral equation of the typeγ b (t) = ∫ 0 t γ a (ω)w(t−ω)dω, where ω(t) is a transport functioncharacteristic of the system, are analyzed in detail. Methods of solving this type of integral equation are briefly discussed. The theory is then applied to problems in tracer kinetics in which input and output are sums of exponentials, and explicit formulae, which are applicable whether or not the pool is uniformly mixed, are derived for “turnover time” and “pool” size.  相似文献   

14.
Let Y be observable random vector such that EY=Xβ and D(Y)=ρ2V. Linear estimation of a parameter p′β under the squared loss is considered. RAO, 1976 and 1979, obtained a necessary and sufficient condition for admissibility of an estimator tY in the case X=I. This result will be extended for arbitrary X. AMS 1970 subject classifications. Primary 62J05; secondary 62C15.  相似文献   

15.
The concept of solid retention time (SRT) was applied in the trickling-filter process. A rational model of the trickling-filter process employing activated-sludge-process operational parameters was presented. The design equation was developed as follows; 1/SRT = [(S0 ? Sn)/X ]·(F/VY ? kd, where SRT is the sludge retention time, S0 is the influent substrate concentration; Sn is the effluent substrate concentration; X is the total cell mass retained per unit filter volume; V is the total volume of the filter; F is the influent flow rate; Y is the cell yield, and kd is the cell decay rate. A laboratory-scale trickling-filter pilot plant treating synthetic sucrose waste-water was studied to verify the present design equation. The solid retention time was evaluated from the total slime mass (active and inactive) retained and the sludge wasted daily. It was found that the present design equation could be applied for designing the trickling-filter process by the application of SRT employed in the activated sludge process. Also, the SRT could be related to the hydraulic loading and influent substrate concentration for a given filter medium. The variation of SRT by the hydraulic loading at constant organic loading was observed and could be expressed by the mechanistic model. When SRT was maintained more than 12 days, it provided the highest five-day biological oxygen demand (BOD5) removal, minimum sludge production, and lowest sludge volume index (SVI) value. The present model does include both microbial growth kinetic concepts, which can be more practical and meaningful for the design of a trickling filter.  相似文献   

16.
The change of an indirect pharmacological response R(t) can be described by a periodic time-dependent production rate kin (t) and a first-order loss constant kout. If kin(t) follows some biological rhythm (e.g., circadian), then the response R(t) also displays a periodic behavior. A new approach for describing the input function in indirect response models with biorhythmic baselines of physiologic substances is introduced. The present approach uses the baseline (placebo) response Rb(t) to recover the equation for kin(t). Fourier analysis provides an approximate equation for Rb(t) that consists of terms (usually two or three) of the Fourier series (harmonics) that contribute most to the overall sum. The model differential equation is solved backward for kin(t), yielding the equation involving Rb(t). A computer program was developed to perform the square L2-norm approximation technique. Fourier analysis was also performed based on nonlinear regression. Cortisol suppression after inhalation of fluticasone propionate (FP) was modeled based on the inhibition of the secretion rate kin(t) using ADAPT II. The pharmacodynamic parameters kout and IC50 were estimated from the model equation with kin(t) derived by the new approach. The proposed method of describing the input function needs no assumption about the behavior of kin(t), is as efficient as methods used previously, and is more flexible in describing the baseline data than the nonlinear regression method. (Chronobiology International, 17(1), 77–93, 2000)  相似文献   

17.
By observing that the n-tuple of rate functionsQ(c) is orthogonal to the c-space gradients of each of the (n - 1) constants of the motion Φ v (c), a generic canonical expression for the rate functions is given in terms of the exterior product of the gradients of the (n - 1) Φ v 's. For models withQ so prescribed from the outset, an analytical general solution is obtainable directly for the system of autonomous ordinary differential equations dc/dt =Q(c). Thus, the generic canonical expression for the rate functions can be utilized to construct analytically solvable models for interacting biological species, as ilIus~rated by examples here.  相似文献   

18.
Summary Breeders of self-pollinated legumes commonly use single-seed descent (SSD) or pod-bulk descent (PBD) to produce segregating populations of highly inbred individuals. We presented equations for the expected value of the additive genetic variance within populations derived by SSD (E(V A)SSD) and PBD (E(V A)PBD) in terms of the initial population size (N 0), the number of seed harvested per pod (M), the probability of survival of an individual (), and the generation at which the population is evaluated (S t). Differences between (E(V A)SSD) and (E(V A)PBD) are due to differences in the expected amount of random drift which occurs with the two methods after the S 0 generation. With both methods, random drift occurs when progeny are sampled from heterozygous parents. An additional component of random drift occurs when sampled progeny fail to survive during SSD, or when sampling occurs amoung families during PBD. For values of N 0, M, , and S t that are typical of soybean (Glycine max (L.) Merr.) breeding programs, (E(V A)SSD) will be greater than (E(V A)PBD). The ratio of (E(V A)SSD) to (E(V A)PBD) will: (1) increase as M and increase; (2) approach a value of 1.00 as N 0 increases; and (3) be a curvilinear function of S t. Plant breeders should compare SSD and PBD based upon values of (E(V A)SSD) and (E(V A)PBD) and the expected cost of carrying out the two methods.Contribution No. 2910 of the South Carolina Agricultural Experiment Station, Clemson University  相似文献   

19.
The intermediate scattering function G(K,t) for any polymer model obeying a linear separable Langevin equation can be expressed in terms of the eigenvalues and eigenvectors of its normal coordinate transformation. An algorithm for the extract numerical evaluation of G(K,t) for linear Rouse-Zimm chains in the presence of hydrodynamic interaction has been developed. The computed G(K,t)2 were fit to C(t) = A exp(?tA) + B, and apparent diffusion coefficients calculated according to Dapp ≡ 1/(2τAK2). G(K,t)2 was surprisingly well-fit by single-exponential decays, especially at both small and large values of Kb, where K is the scattering vector and b the root-mean-squared subunit extension. Plots of Dapp vs K2 in-variably showed a sigmoidal rise from D0 at K2 = O up to a constant plateau value at large K2b2. Analytical expression for G(K,t), exact in the limit of short times, were obtained for circular Rouse-Zimm chains with and without hydrodynamic interaction, and also for free-draining linear chains, and in addition for the independent-segment-mean-force (ISMF) model. The predicted behaviors for G(K,t) at large Kb (or KRG) was found in all cases to be single-exponential with 1/τ ∝ K2 at large Kb, in agreement with the computational results. A simple procedure for estamating all parameter of the Rouse-Zimm model from a plot of Dapp vs K2 is proposed. Experimental data for both native and pH-denatured calf-thymus DNA in 1.0M Nacl with and without EDTA clearly plateau behavior of Dapp at large values of K, in harmony with the present Rouse-Zimm and ISMF theories, and in sharp contrast to previous predictions based on the Rouse-Zimm model.  相似文献   

20.
It is shown that if x(t) is the solution of a second order differential equation, with real negative characteristic roots (not necessarily distinct), which exhibits an extremum at t = T, then T|x(T)|/|A| [UNK] 1/e where A is the area under the x(t) curve. This result is compared to a special case previously derived by M. Morales and applications of the theorem to formal kinetic problems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号