首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sources of hematopoietic cells for bone marrow transplantation are limited by the supply of compatible donors, the possibility of viral infection, and autologous (patient) marrow that is depleted from prior chemo- or radiotherapy or has cancerous involvement. Anex vivo system to amplify hematopoietic progenitor cells could increase the number of patients eligible for autologous transplant, allow use of cord blood hematopoietic cells to repopulate an adult, reduce the amount of bone marrow and/or mobilized peripheral blood stem and progenitor cells required for transplantation, and reduce the time to white cell and platelet engraftment. The cloning of hematopoietic growth factors and the identification of appropriate conditions has enabled the development of successfulex vivo hematopoietic cell cultures. Purification systems based on the CD34 marker (which is expressed by the most primitive hematopoietic cells) have proven an essential tool for research and clinical applications. Present methods for hematopoietic cultures (HC) on stromal (i.e. accessory cells that support hematopoiesis) layers in flasks lack a well-controlled growth environment. Several bioreactor configurations have been investigated, and a first generation of reactors and cultures has reached the clinical trial stage. Our research suggests that perfusion conditions improve substantially the performance of hematopoietic reactors. We have designed and tested a perfusion bioreactor system which is suitable for the culture of non-adherent cells (without stromal cells) and readily scaleable for clinical therapies. Eliminating the stromal layer eliminates the need for a stromal cell donor, reduces culture time, and simplifies the culture system. In addition, we have compared the expansion characteristics of both mononuclear and CD34+ cells, since the latter are frequently assumed to give a superior performance for likely transplantation therapies.Abbreviations BFU0-E burst forming unit-erythroid - BM bone marrow - CB cord blood - CFU-C colony forming unit-culture - CFU-E colony forming unit-erythroid - CFU-F colony forming unit-fibroblast - CFU-GEMM colony forming unit-granulocyte, erythroid, macrophage, megakaryocyte - CFU-GM colony forming unit-granulocyte, macrophage - CFU-Mix colony forming unit-mixed (also known as CFU-GEMM) - CML chronic myeloid leukemia - CSF colony stimulating factor - DMSO dimethyl sulfoxide - ECM extracellular matrix - EPO erythropoietin - FL fetal liver - HC hematopoietic culture - LTBMC long-term bone marrow culture - LTC-IC long-term culture initiating cell - LTHC long-term hematopoietic culture - MNC mononuclear cells - PB peripheral blood  相似文献   

2.
There is an increasing body of evidence that suggests that genes involved in cell fate decisions and pattern formation during development also play a key role in the continuous cell fate decisions made by adult tissue stem cells. Here we show that prolonged in vitro culture (14 days) of murine bone marrow lineage negative cells in medium supplemented with three early acting cytokines (stem cell factor, Flk-2/Flt-3 ligand, thrombopoietin) and with immobilized Notch ligand, Jagged-1, resulted in robust expansion of serially transplantable hematopoietic stem cells with long-term repopulating ability. We found that the absolute number of marrow cells was increased approximately 8 to 14-fold in all cultures containing recombinant growth factors. However, the frequency of high quality stem cells was markedly reduced at the same time, except in cultures containing growth factors and Jagged-1-coated Sepharose-4B beads. The absolute number of hematopoietic cells with long-term repopulating ability was increased approximately 10 to 20-fold in the presence of multivalent Notch ligand. These results support a role for combinatorial effects by Notch and cytokine-induced signaling pathways in regulating hematopoietic stem cell fate and to a potential role for Notch ligand in increasing cell numbers in clinical stem cell transplantation.  相似文献   

3.
The ex vivo expansion of hematopoietic progenitor cells is of great interest for a variety of clinical applications, e.g. bone marrow transplantation or gene therapy. Therefore it is of general interest to develop a culture system, able to mimic the in vivo hematopoesis, which is a prerequisite for long-term hematopoietic culture. Our approach was to modify a continuously perfused bioreactor for cultivation and expansion of human hematopoietic stem cells. Therefore we immobilized stromal cells (human primary stromal cells or the murine cell line M2-10B4) in porous glass carriers in a fixed bed reactor and cocultivated human hematopoietic progenitor cells for several weeks. After inoculation of mononuclear cells derived from umbilical cord blood or peripheral blood stem cells both adherent and non adherent cells were harvested and analyzed by flow cytometry and short-term colony assays. During cultivation there was a permanent production of progenitor cells and mature blood cells derived from the immobilized cells in the carriers. We could demonstrate the immobilization of hematopoietic progenitor cells of the myeloid system detectable in short-term colony assays. Additionally we could observe the expansion of very early progenitor cells (CFU-GEMM) up to 4.2-fold and later progenitor cells (CFU-GM and BFU-E) up to 7-fold and 1.8-fold, respectively. P.M. and B.S. contributed equal parts to this work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The role of fibroblast growth factors and their receptors (FGFRs) in the regulation of normal hematopoietic stem cells is unknown. Here we show that, in mouse bone marrow, long-term repopulating stem cells are found exclusively in the FGFR(+) cell fraction. During differentiation toward committed progenitors, stem cells show loss of FGFR expression. Prolonged culture of bone marrow cells in serum-free medium supplemented with only FGF-1 resulted in robust expansion of multilineage, serially transplantable, long-term repopulating hematopoietic stem cells. Thus, we have identified a simple method of generating large numbers of rapidly engrafting stem cells that have not been genetically manipulated. Our results show that the multipotential properties of stem cells are dependent on signaling through FGF receptors and that FGF-1 plays an important role in hematopoietic stem cell homeostasis.  相似文献   

5.
Suspension culture of hematopoietic stem cells in stirred bioreactors   总被引:3,自引:0,他引:3  
Hematopoietic stem cells have applications in bone marrow transplantations for the treatment of hematopoietic disorders. When murine hematopoietic stem cells were cultured in 50 ml stirred bioreactors for 14 d, stem-cell-antigen-1 positive cells (hematopoietic primitive progenitor cells) and long-term culture-initiating cells (hematopoietic stem cells) grew by 5-fold and 4-fold, respectively. These results show the possibility of growing hematopoietic stem cells using a stirred bioreactor.  相似文献   

6.
Currently the most successful methods for culturing human hematopoietic cells employ some form of perfused bioreactor system. However, these systems do not permit the clonal outgrowth of single progenitor cells. Therefore, we have investigated the use of alginate-poly-L-lysine microencapsulation of human bone marrow, combined with rapid medium exchange, as a system that may overcome this limitation for the purpose of studying the kinetics of progenitor cell growth. We report that a 12 to 24-fold multilineage expansion of adult human bone marow cells was achieved in about 16 to 19 days with this system and that visually identifiable colonies within the capsules were responsible for the increase in cell number. The colonies that represented the majority of cell growth originated from cells that appeared to be present in a frequency of about 1 in 4000 in the encapsulated cell population. These colonies were predominantly granulocytic and contained greater than 40,000 cells each. Large erythroid colonies were also present in the capsules, and they often contained over 10,000 cells each. Time profiles of the erythroid progenitor cell density over time were obtained. Burst-forming units erythroid (BFU-E) peaked around day 5, and the number of morphologically identifiable erythroid cells (erythroblasts through reticulocytes) peaked on day 12. We also report the existence of a critical inoculum density and how growth was improved with the use of conditioned medium derived from a microcapsule culture initiated above the critical inoculum density. Taken together, these results suggest that microencapsulation of human hematopoietic cells allows for outgrowth of progenitor, and possible preprogenitor, cells and could serve as a novel culture system for monitoring the growth and differentiation kinetics of these cells.  相似文献   

7.
Ex vivo expanded primitive hematopoietic cells can be utilized in bone marrow transplantation therapies to treat patients suffering from various cancers and hematopoietic malignancies. A high initial cell density (106 cells/mL) and the supplement of soluble factors secreted by stromal feeders in combination with growth-promoting (interleukin-3 and stem cell factor) and growth-inhibiting (macrophage-inflammatory protein-1) cytokines resulted in high, long-term expansions (17-fold over a 14-day culture period) of human hematopoietic progenitors in a stirred suspension bioreactor. This study demonstrated that a transplantable dosage of human hematopoietic progenitor cells (8.1 ± 1.3 × 106 colony forming unit-granulocyte/macrophage) can be generated from approximately 10 mL of bone marrow aspirate in a 14-day culture using a 250 mL suspension bioreactor system. © Rapid Science Ltd. 1998  相似文献   

8.
Large-scale cultivation of murine bone marrow cells was accomplished in an airlift packed bed bioreactor system designed to mimic the in vivo bone marrow environment. The attachment-dependent stromal cell population, which provides the necessary microenvironment, including growth factors for subsequent hematopoietic activity, was first established within the bioreactor. This attachment-dependent cell growth occurred on the fiber-glass matrix packed in the annular region of the bioreactor. Once the stromal cell layer was established, fresh bone marrow cells were inoculated to initiate hematopoiesis. However, traditional culture medium was found to be inadequate for the initiation of hematopoiesis, but the use of stromal cell "conditioned" medium (with no exogenously added growth factors) yielded sustained cell production. The extent of stromal cell subculturing prior to inoculation into the bioreactor and the inoculation density were also important factors for the successful initiation of hematopoietic activity. A 500-mL perfusion culture experiment resulted in the production and harvest of 3.6 x 10(8) suspended bone marrow cells over the course of 11 weeks. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
Two novel early B lymphocyte precursor populations have been identified by their capacity to differentiate in Whitlock-Witte bone marrow cultures. Cells expressing neither the B lineage antigen B220 nor Thy-1 contain committed B cell precursors which differentiate in short-term culture into pre-B and B cells. The other population expresses low levels of Thy-1, and lacks B220 as well as the T cell markers L3T4 and Lyt-2. The Thy-1+ cells which initiate long-term B cell cultures contain clonogenic B cell precursors at a frequency of 1 in 11, a 100-fold enrichment over unseparated bone marrow. Thy-1+ cells are also highly enriched for myeloid-erythroid precursors (CFU-S). Thy-1+ cells allow long-term survival of lethally irradiated mice and fully reconstitute the hematopoietic system, including T and B lymphocyte compartments. These results indicate that this population (approximately 0.1% of bone marrow) may contain the pluripotent hematopoietic stem cell.  相似文献   

10.
In an effort to obtain defined culture conditions for ex vivo expansion of hematopoietic stem and progenitor cells which avoid the supplementation of serum, we cultured human CD34(+) hematopoietic progenitor cells in a chemically defined, serum-free medium in the presence of hematopoietic growth factors (HGFs), stem cell factor (SCF), interleukin (IL)-1beta, IL-3, IL-6, and erythropoietin (EPO). A medium, SFM-1, was prepared according to a protocol previously optimized for semisolid progenitor cell assays containing Iscove's Modified Dulbecco's Medium (IMDM) plus cholesterol, bovine serum albumin, transferrin, nucleotides and nucleosides, insulin, and beta-mercaptoethanol. In static cultures seeded with CD34(+)-enriched progenitor cells isolated from human peripheral blood, a mean 76.6-fold expansion of total nucleated cells and a mean 4.6-fold expansion of colony-forming cells (CFC) was recorded after 14 days. Morphological analysis of the expanded cells revealed formation of myeloid, erythroid, and megakaryocytic cells. Flow cytometric analysis indicated that CD34(+) antigen expressing cells were maintained to a limited degree only, and cell populations expressing surface markers for myeloid (CD33, CD14, and CD15) and megakaryocytic (CD41a) lineages predominated. Within SFM-1, bovine serum albumin (BSA), cholesterin, and transferrin represented the most critical components needed for efficient total cell and CFC expansion. Addition of autologous patient plasma (APP) or fetal calf serum (FCS) to SFM-1 resulted in inferior cell amplification and CFC formation compared to controls in SFM-1, indicating that the components used in SFM-1 could replace exogenous serum. Four commercially available serum-free media resulted in either comparable or lower total cell and CFC yields as SFM-1. The transplantation potential of CD34(+) cells after culture in SFM-1 was assayed using limiting dilution analysis on preformed irradiated bone marrow stroma and revealed maintenance of long-term bone marrow culture initiating cell (LTCIC) levels during the culture period. These data indicate that HGF-supported multilineage ex vivo expansion of human CD34(+) hematopoietic progenitor cells is feasible using an IMDM-based culture medium which contains a restricted number of additives, resulting in analogous or improved yields of both primitive and differentiated cells compared to previously established protocols. We suggest that this culture protocol is of advantage when working with pharmaceutical-grade preparations under serum-free conditions.  相似文献   

11.
12.
The close phylogenetic relationship of macaques to humans has resulted in their widespread use as a preclinical model for bone marrow transplantation and stem cell gene therapy. To facilitate further use of this model, we undertook analysis of hematopoietic cells using multiparametric flow cytometric analysis. Rhesus CD34+CD38- cells displayed a number of characteristics of primitive hematopoietic cells, including low forward and orthogonal scatter and the lack of expression of lineage-specific markers or human lymphocyte antigen-DR. Four-color flow cytometric analysis demonstrated that rhesus CD34+CD38- cells were heterogenous with respect to Thy-1 expression and were CD59dim. Quantitative limiting dilution long-term culture-initiating cell (LTC-IC) analysis demonstrated that CD34+CD38- cells were approximately 150-fold enriched for LTC-IC as compared with unfractionated bone marrow, and occurred at a frequency similar to that previously reported in humans. Thus, as in humans, the CD34+38- population of rhesus macaque bone marrow is enriched for primitive, multipotent hematopoietic progenitor cells.  相似文献   

13.
The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion.  相似文献   

14.
Bacterial infection can affect hematopoietic precursor cells in bone marrow, because the infected tissues produce various cytokines and chemokines. Little is known about hematopoietic precursor cells, including hematopoietic stem cells and their progenitors, during mycobacterial infection. Here, we showed that mycobacterial infections result in the expansion of not only the lin-c-kit+sca-1+ (LKS+) cell population, but also granulocyte-monocyte progenitor cells in a chronic murine tuberculosis model. Interestingly, stimulation of LKS+ cells with attenuated Mycobacterium tuberculosis H37Ra culture filtrate (RaCF) was significantly stronger than that by virulent H37Rv culture filtrate (RvCF). Lower TNF-α and IL-6 levels were observed in RvCF-stimulated bone marrow cells. Neutralization of TNF-α or IL-6 in RaCF-stimulated bone marrow cells markedly suppressed LKS+ cell clonal expansion. Additionally, numbers of LKS+ cells were lower in TLR2(-/-) and MyD88(-/-) mice after mycobacterial infection. Taken together, LKS+ cell proliferation related to mycobacterial virulence may be related to the secretion of TNF-α and IL-6 associated with TLR signaling. Expansion of hematopoietic progenitor cells may, therefore, play an important role during mycobacterial infection.  相似文献   

15.
The successful ex vivo reconstruction of human bone marrow is an extraordinarily important basic scientific and clinical goal. Fundamentally, the system is the paradigm of a complex interactive tissue, in which the proliferation and regulated differentiation of one parenchymal cell type (the hematopoietic stem cell) is governed by the surrounding stromal cells. Understanding and reproducing the molecular interactions between bone marrow stromal cells and stem cells in tissue culture models is therefore the critical step in successful bone marrow tissue culture. Clinically, successful reconstruction of human bone marrow would permit the controlled production of mature blood cells for transfusion therapy, and immature bone marrow stem cells for bone marrow transplantation. In approaching the bone marrow culture system, we recognize the critical role that hematopoietic growth factors (HGFs) play in hematopoiesis. Since stromal cells in traditional human bone marrow cultures produce little HGFs, we have begun by asking whether local supplementation of hematopoietic growth factors via genetically engineered stromal cells might augment hematopoiesis in liquid cultures. The results indicate that locally produced GM-CSF and IL-3 do augment hematopoiesis for several weeks in culture. In combination with geometric and dynamic approaches to reconstructing physiological bone marrow microenvironments, we believe that this approach has promise for reconstructing human bone marrow ex vivo, thereby permitting its application to a variety of basic and clinical problems.  相似文献   

16.
17.
Primitive hematopoietic stem cells are responsible for long-term engraftment in irradiated host. Here, we report that multi-drug resistance 1 (mdr1) gene expressing primitive hematopoietic cells were multiplied in ex vivo culture, with the support of extracellular matrix components and cytokines. About 20-fold expansion of total nucleated cells was achieved in a 10-day culture. Lin(-)Sca-1(+) and long-term culture-initiating cells were increased by 54- and 26-fold, respectively. Expanded cells were long-term multi-lineage engraftible in sub-lethally irradiated mice. Donor-derived peripheral blood chimerism was significantly higher (73.2+/-9.1%, p<0.01) in expanded cells than in normal and 5-flurouracil-treated bone marrow cells. Most interestingly, the expression of mdr1 gene was significantly enhanced in cultured cells than in other two sources of donor cells. The mdr1 gene was functional since expanded cells effluxed Hoechst 33342 and Rh123 dyes. These results suggest that primitive engraftible stem cells can be expanded in the presence of suitable microenvironments.  相似文献   

18.
Mesenchymal stem cells (MSCs) - usually obtained from bone marrow - often require expansion culture. Our protocol uses clinical grade urokinase to degrade clots in the bone marrow and release MSCs for further use. This protocol provides a rapid and inexpensive alternative to bone marrow resampling. Bone marrow is a major source of MSCs, which are interesting for tissue engineering and autologous stem cell therapies. Upon withdrawal bone marrow may clot, as it comprises all of the hematopoietic system. The resulting clots contain also MSCs that are lost for expansion culture or direct stem cell therapy. We experienced that 74% of canine bone marrow samples contained clots and yielded less than half of the stem cell number expected from unclotted samples. Thus, we developed a protocol for enzymatic digestion of those clots to avoid labor-intense and costly bone marrow resampling. Urokinase - a clinically approved and readily available thrombolytic drug – clears away the bone marrow clots almost completely. As a consequence, treated bone marrow aspirates yield similar numbers of MSCs as unclotted samples. Also, after urokinase treatment the cells kept their metabolic activity and the ability to differentiate into chondrogenic, osteogenic and adipogenic lineages. Our protocol salvages clotted blood and bone marrow samples without affecting the quality of the cells. This obsoletes resampling, considerably reduces sampling costs and enables the use of clotted samples for research or therapy.  相似文献   

19.
Expansion and/or maintenance of hematopoietic stem cell (HSC) potential following in vitro culture remains a major obstacle in stem cell biology and bone marrow (BM) transplantation. Several studies suggest that culture of mammalian cells in microgravity (micro-g) may reduce proliferation and differentiation of these cells. We investigated the application of these findings to the field of stem cell biology in the hopes of expanding HSC with minimal loss of hematopoietic function. To this end, BM CD34+ cells were cultured for 4-6 d in rotating wall vessels for simulation of micro-g, and assessed for expansion, cell cycle activation, apoptosis, and hematopoietic potential. While CD34+ cells cultured in normal gravity (1-g) proliferated up to threefold by day 4-6, cells cultured in micro-g did not increase in number. As a possible explanation for this, cells cultured in simulated micro-g were found to exit G0/G1 phase of cell cycle at a slower rate than 1-g controls. When assayed for primitive hematopoietic potential in secondary conventional 1-g long-term cultures, cells from initial micro-g cultures produced greater numbers of cells and progenitors, and for a longer period of time, than cultures initiated with 1-g control cells. Similar low levels of apoptosis and adhesion molecule phenotype in micro-g and 1-g-cultured cells suggested similar growth patterns in the two settings. These data begin to elucidate the effects of micro-g on proliferation of human hematopoietic cells and may be potentially beneficial to the fields of stem cell biology and somatic gene therapy.  相似文献   

20.
To test the hypothesis that extracellular matrix (ECM) components maintain stem cell property, murine bone marrow (BM) cells were expanded in fibronectin and laminin coated plate in the presence of cytokines. We observed significant phenotypic and functional improvement of expanded cells. In 10 days, 800-fold expansion of colony-forming unit-granulocyte erythrocyte monocyte megakaryocyte (CFU-GEMM) was observed in the cultured cells. No apparent activation of cell cycle was observed, but CD29 and very late antigen-4 (VLA-4) expression was increased, as compared to the normal BM cells. A fraction of the expanded cells became verapamil sensitive, suggesting upregulation of multi-drug resistant gene(s), as found in the primitive hematopoietic stem cells (HSCs). Competitive repopulation assay confirmed that HSCs compartment was amplified during culture. Overall, our study clearly demonstrated that ex vivo culture of murine HSCs in the presence of fibronectin and laminin resulted in expansion of primitive stem cells and improvement in the marrow engraftibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号