首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Similarity in structure and sequence homology has led to the identification of new members of the interleukin-1 (IL-1) ligand and receptor superfamilies. IL-1F6, IL-1F8 and IL-1F9 have been shown to signal through IL-1R-related protein 2 and IL-1 receptor accessory protein leading to activation of NFκB, while IL-1F7 and IL-1F10 interact with the IL-18 receptor and the soluble IL-1 receptor type I respectively. In contrast, identification of a biological role for IL-1F5 has remained elusive, with conflicting data relating to its possible ability to antagonize IL-1F9-stimulated activation of NFκB in Jurkat cells transfected with IL-1R-related protein 2. In this study, we set out to investigate a possible role for IL-1F5 in the brain and report that it antagonizes the inflammatory effects of IL-1β and lipopolysaccharide (LPS) in vivo and in vitro including the inhibitory effect on long-term potentiation (LTP) in rat hippocampus. We demonstrate that IL-1F5 induces IL-4 mRNA and protein expression in glia in vitro and enhances hippocampal expression of IL-4 following intracerebroventricular (i.c.v.) injection. The inhibitory effect of IL-1F5 on LPS-induced IL-1β is attenuated in cells from IL-4-defective (IL−4−/− mice). Our findings suggest that IL-1F5 mediates anti-inflammatory effects through its ability to induce IL-4 production and that this is a consequence of its interaction with the orphan receptor, single Ig IL-1R-related molecule (SIGIRR)/TIR8, as the effects were not observed in SIGIRR−/− mice. In contrast to its effects in brain tissue, IL-1F5 did not attenuate LPS-induced changes, or up-regulated IL-4 in macrophages or dendritic cells, suggesting that the effect is confined to the brain.  相似文献   

3.
The P2X7 receptor: a key player in IL-1 processing and release   总被引:19,自引:0,他引:19  
Human IL-1 family proteins are key mediators of the host response to infections, injury, and immunologic challenges. The mechanism by which IL-1 activates proinflammatory responses in target cells, and the plasma membrane receptors involved, is fairly well known. This has led to the development of innovative drugs that block IL-1 downstream to its synthesis and secretion. On the contrary, the mechanism of IL-1 and other IL-1 family members (e.g., IL-18) maturation and release is incompletely understood. Accruing evidence points to a plasma membrane receptor for extracellular ATP, the P2X(7) receptor, as a key player in both processes. A deeper understanding of the mechanism by which the P2X(7) receptor triggers IL-1 maturation and exteriorization may suggest novel avenues for the treatment of inflammatory diseases and provide a deeper insight in the fundamental mechanism of protease activation and cellular export of proteins lacking a leader sequence.  相似文献   

4.
Interleukin 1 (IL-1) plays a prominent role in immune and inflammatory reactions. Our understanding of the IL-1 family has recently expanded to include six novel members named IL-1F5 to IL-1F10. Recently, it was reported that IL-1F9 activated NF-kappaB through the orphan receptor IL-1 receptor (IL-1R)-related protein 2 (IL-1Rrp2) in Jurkat cells (Debets, R., Timans, J. C., Homey, B., Zurawski, S., Sana, T. R., Lo, S., Wagner, J., Edwards, G., Clifford, T., Menon, S., Bazan, J. F., and Kastelein, R. A. (2001) J. Immunol. 167, 1440-1446). In this study, we demonstrate that IL-1F6 and IL-1F8, in addition to IL-1F9, activate the pathway leading to NF-kappaB in an IL-1Rrp2-dependent manner in Jurkat cells as well as in multiple other human and mouse cell lines. Activation of the pathway leading to NF-kappaB by IL-1F6 and IL-1F8 follows a similar time course to activation by IL-1beta, suggesting that signaling by the novel family members occurs through a direct mechanism. In a mammary epithelial cell line, NCI/ADR-RES, which naturally expresses IL-1Rrp2, all three cytokines signal without further receptor transfection. IL-1Rrp2 antibodies block activation of the pathway leading to NF-kappaB by IL-1F6, IL-1F8, and IL-1F9 in both Jurkat and NCI/ADR-RES cells. In NCI/ADR-RES cells, the three IL-1 homologs activated the MAPKs, JNK and ERK1/2, and activated downstream targets as well, including an IL-8 promoter reporter and the secretion of IL-6. We also provide evidence that IL-1RAcP, in addition to IL-1Rrp2, is required for signaling by all three cytokines. Antibodies directed against IL-1RAcP and transfection of cytoplasmically deleted IL-1RAcP both blocked activation of the pathway leading to NF-kappaB by the three cytokines. We conclude that IL-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP.  相似文献   

5.

Background

The bone marrow (BM) cytokine milieu might substantially affect T-lymphocyte homeostasis in HIV-positive individuals. Interleukin-7 (IL-7) is a bone marrow-derived cytokine regulating T-cell homeostasis through a CD4+-driven feedback loop. CD4+ T-lymphopenia is associated with increased free IL-7 levels and reduced IL-7R expression/function, which are only partially reverted by highly active antiretroviral therapy (HAART). We investigated the BM production, peripheral expression and signaling (pStat5+ and Bcl-2+ CD4+/CD8+ T cells) of IL-7/IL-7Rα in 30 HAART-treated HIV-positive patients who did not experience CD4+ recovery (CD4+ ≤200/µl) and who had different levels of HIV viremia; these patients included 18 immunological nonresponders (INRs; HIV-RNA≤50), 12 complete failures (CFs; HIV-RNA>1000), and 23 HIV-seronegative subjects.

Methods

We studied plasma IL-7 levels, IL-7Rα+CD4+/CD8+ T-cell proportions, IL-7Rα mRNA expression in PBMCs, spontaneous IL-7 production by BM mononuclear cells (BMMCs), and IL-7 mRNA/IL-7Rα mRNA in BMMC-derived stromal cells (SCs). We also studied T-cell responsiveness to IL-7 by measuring the proportions of pStat5+ and Bcl-2+ CD4+/CD8+ T cells.

Results

Compared to HIV-seronegative controls, CFs and INRs presented elevated plasma IL-7 levels and lower IL-7Rα CD4+/CD8+ cell-surface expression and peripheral blood production, confirming the most relevant IL-7/IL-7R disruption. Interestingly, BM investigation revealed a trend of higher spontaneous IL-7 production in INRs (p = .09 vs. CFs) with a nonsignificant trend toward higher IL-7-Rα mRNA levels in BMMC-derived stromal cells. However, upon IL-7 stimulation, the proportion of pStat5+CD4+ T cells did not increase in INRs despite higher constitutive levels (p = .06); INRs also displayed lower Bcl-2+CD8+ T-cell proportions than controls (p = .04).

Conclusions

Despite severe CD4+ T-lymphopenia and a disrupted IL-7/IL-7R profile in the periphery, INRs display elevated BM IL-7/IL-7Rα expression but impaired T-cell responsiveness to IL-7, suggesting the activity of a central compensatory pathway targeted to replenish the CD4+ compartment, which is nevertheless inappropriate to compensate the dysfunctional signaling through IL-7 receptor.  相似文献   

6.
Dungan LS  Mills KH 《Cytokine》2011,56(1):126-132
The interleukin (IL)-1 cyokine family plays a vital role in inflammatory responses during infection and in autoimmune diseases. The pro-inflammatory cytokines, IL-1β and IL-18 are members of the IL-1 family that require cleavage by caspase-1 in the inflammasome to generate the mature active cytokines. Cells of the innate immune system, including γδ T cells and invariant natural killer T (iNKT) cells respond rapidly to invading pathogens by producing inflammatory cytokines, such as IFN-γ and IL-17. IL-1β or IL-18 in combination with IL-23 can induce IL-17 production by γδ T cells without T cell receptor (TCR) engagement. IL-1β and IL-23 can also synergize to induce IL-17 production by iNKT cells. Furthermore, CD4+ αβ effector memory T cells secrete IL-17 in response to IL-23 in combination with either IL-1β or IL-18, in the absence of any TCR stimulation. The early IL-17 produced by innate cells induces recruitment of neutrophils to the site of infection, stimulates local epithelial cells to secrete anti-microbial proteins, such as lipocalins and calgranulins, induces production of structural proteins important in tight junction stability, and promotes production of matrix metalloproteinases. Caspase-1 processed IL-1 family cytokines therefore play a vital role in the innate immune response and induction of IL-17 from innate immune cells which functions to fight infections and promote autoimmunity.  相似文献   

7.
Six novel members of the IL-1 family of cytokines were recently identified, primarily through the use of DNA database searches for IL-1 homologues, and were named IL-1F5 to IL-1F10. In the present study, we investigated the effect of IL-1F8 on primary human joint cells, and examined the expression of the new IL-1 family members in human and mouse joints. Human synovial fibroblasts (hSFs) and human articular chondrocytes (hACs) expressed the IL-1F8 receptor (IL-1Rrp2) and produced pro-inflammatory mediators in response to recombinant IL-1F8. IL-1F8 mRNA expression was increased in hSFs upon stimulation with proinflammatory cytokines, whereas in hACs IL-1F8 mRNA expression was constitutive. However, IL-1F8 protein was undetectable in hSF and hAC culture supernatants. Furthermore, although IL-1beta protein levels were increased in inflamed human and mouse joint tissue, IL-1F8 protein levels were not. IL-1F8 levels in synovial fluids were similar to or lower than those in matched serum samples, suggesting that the joint itself is not a major source of IL-1F8. Serum levels of IL-1F8 were similar in healthy donors, and patients with rheumatoid arthritis, osteoarthritis and septic shock, and did not correlate with inflammatory status. Interestingly however, we observed high IL-1F8 levels in several serum samples in all groups. In conclusion, IL-1F8 exerts proinflammatory effects in primary human joint cells. Joint and serum IL-1F8 protein levels did not correlate with inflammation, but they were high in some human serum samples tested, including samples from patients with rheumatoid arthritis. It remains to be determined whether circulating IL-1F8 can contribute to joint inflammation in rheumatoid arthritis.  相似文献   

8.
IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfide-linked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins, as well as that of natural IL-17F and IL-17A derived from activated human CD4+ T cells, by enzyme-linked immunosorbent assay, immunoprecipitation followed by Western blotting, and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system, and that all forms of the recombinant proteins have in vitro functional activity. Furthermore, we find that in addition to the homodimers of IL-17F and IL-17A, activated human CD4+ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.  相似文献   

9.
Recently, several novel members of the IL-1 family have been identified. The possible therapeutic utility and the underlying biologic role of these new members remain unclear. In the present study we analyzed the anti-tumor activity of human IL-1 homologue 4(IL-1H4; renamed IL-F7) by adenovirus-mediated gene transfer (AdIL-1H4) directly into murine tumors. In vitro expression analysis showed that IL-1H4 was a secretory protein. Treatment of an established MCA205 mouse fibrosarcoma by single intratumoral injection of AdIL-1H4 resulted in significant growth suppression. Furthermore, complete inhibition of tumor growth was observed following multiple injections of AdIL-1H4. The anti-tumor activity of IL-1H4 was abrogated in nude and SCID mice and in IL-12-, IFN-gamma-, or Fas ligand-deficient mice. In contrast, IL-1H4 was able to confer substantial anti-tumor effects in NKT-deficient mice. These results suggest that IL-1H4 could play an important role in the link between innate and adaptive immunity and may be useful for tumor immunotherapy.  相似文献   

10.
During T cell-B cell collaboration, plasma cell (PC) differentiation and Ig production are known to require T cell-derived soluble factors. However, the exact nature of the cytokines produced by activated T cells that costimulate PC differentiation is not clear. Previously, we reported that costimulation of purified human B cells with IL-21 and anti-CD40 resulted in efficient PC differentiation. In this study, we addressed whether de novo production of IL-21 was involved in direct T cell-induced B cell activation, proliferation, and PC differentiation. We found that activated human peripheral blood CD4(+) T cells expressed mRNA for a number of cytokines, including IL-21, which was confirmed at the protein level. Using a panel of reagents that specifically neutralize cytokine activity, we addressed which cytokines are essential for B cell activation and PC differentiation induced by anti-CD3-activated T cells. Strikingly, neutralization of IL-21 with an IL-21R fusion protein (IL-21R-Fc) significantly inhibited T cell-induced B cell activation, proliferation, PC differentiation, and Ig production. Inhibition of PC differentiation was observed even when the addition of IL-21R-Fc was delayed until after initial B cell activation and expansion had occurred. Importantly, IL-21 was found to be involved in PC differentiation from both naive and memory B cells. Finally, IL-21R-Fc did not inhibit anti-CD3-induced CD4(+) T cell activation, but rather directly blocked T cell-induced B cell activation and PC differentiation. These data are the first to document that B cell activation, expansion, and PC differentiation induced by direct interaction of B cells with activated T cells requires IL-21.  相似文献   

11.
PYRIN-containing Apaf1-like proteins (PYPAFs) are members of the nucleotide-binding site/leucine-rich repeat (NBS/LRR) family of signal transduction proteins. We report here that PYPAF7 is a novel PYPAF protein that activates inflammatory signaling pathways. The expression of PYPAF7 is highly restricted to immune cells, and its gene maps to chromosome 19q13.4, a locus that contains a cluster of genes encoding numerous PYPAF family members. Co-expression of PYPAF7 with ASC results in the recruitment of PYPAF7 to distinct cytoplasmic loci and a potent synergistic activation of NF-kappa B. To identify other proteins involved in PYPAF7 and ASC signaling pathways, we performed a mammalian two-hybrid screen and identified pro-caspase-1 as a binding partner of ASC. Co-expression of PYPAF7 and ASC results in the synergistic activation of caspase-1 and a corresponding increase in secretion of interleukin-1 beta. In addition, PYPAF1 induces caspase-1-dependent cytokine processing when co-expressed with ASC. These findings indicate that PYPAF family members participate in inflammatory signaling by regulating the activation of NF-kappa B and cytokine processing.  相似文献   

12.
13.
IL-7 is a glycoprotein involved in the regulation of lymphocyte precursor growth. In addition, it has a comitogenic effect on mature T cells but not on mature B cells. The exact mechanism whereby IL-7R mediates these cell growth properties remains unknown. Because many growth factor receptor systems on various cell types transduce signals by activating a tyrosine kinase, we have studied here the effect of IL-7R ligation on protein tyrosine phosphorylation. We found that human rIL-7 consistently induced tyrosine phosphorylation of five major proteins, of 175, 155, 135, 110, and 85 kDa, and five minor proteins. The effect of human rIL-7 on tyrosine phosphorylation of these substrates was concentration and time dependent. One of the known substrates that is phosphorylated on tyrosine residues after binding of growth factors to their receptors is the phosphoinositide-specific phospholipase C. Several phospholipase C isozymes have been recently recognized; one isozyme, phospholipase C-gamma 1, was demonstrated to be phosphorylated rapidly after ligand binding to the platelet-derived growth factor receptor and the T cell Ag receptor. We show here that, in contrast to Ag receptor ligation, activation of IL-7R does not induce tyrosine phosphorylation on phospholipase C-gamma 1. Consistent with these results, human rIL-7 failed to increase phosphatidylinositol turnover and did not induce a rise in cytosolic free Ca2+ in the thymocytes, mature T cells, or pre-pre-B cells. The results indicate that the IL-7R mediates the activation of the tyrosine phosphorylation pathway but does not induce the phosphatidylinositol-phospholipase C pathway.  相似文献   

14.
Human IL-7: a novel T cell growth factor   总被引:15,自引:0,他引:15  
IL-7 is a hemopoietic growth factor that induces the proliferation of early B lineage cells. In the course of studies to determine its effect on human bone marrow cells, we noted a marked outgrowth of mature T cells. When T cells from the circulation were cultured with IL-7, a dose-dependent proliferative response was observed. The target cells included both the CD4+ and CD8+ subpopulations of T cells, but the memory T cells (CD45R-) were better responders than unprimed T cells (CD45R+). IL-7 induced the expression of receptors for IL-2 and transferrin and higher levels of the 4F2 activation Ag. Although T cell responses to suboptimal concentrations of IL-7 were enhanced by the addition of IL-2, the proliferative response to IL-7 was not inhibited by neutralizing antibody to the IL-2R (Tac), nor was IL-2 secretion detected in this response. This response pattern of mature T cells suggests an important role for IL-7 in normal T cell physiology in humans.  相似文献   

15.
1F7, a novel cell surface molecule, involved in helper function of CD4 cells   总被引:18,自引:0,他引:18  
We have developed a monoclonal antibody, anti-1F7, that inhibits soluble Ag-driven T cell proliferation as well as PWM-driven IgG synthesis. Anti-1F7 antibody reacts with approximately 57% of unfractionated T cells, 62% of CD4+ cells, and 54% of CD8+ cells. Although the 1F7 Ag is widely distributed among lymphoid cells, this Ag on CD4+ cells is preferentially expressed on the CDw29(4B4+) helper population. Moreover, anti-1F7 antibody further subdivides the CD4+CDw29+ cell subset into CDw29+1F7+ and CDw29+1F7- populations. The CD4+CDw29+1F7+ population of cells maximally proliferates to recall Ag such as tetanus toxoid, whereas helper function for PWM-driven IgG synthesis by B cells belongs to both the CD4+CDw29+1F7+ and CD4+CDw29+1F7- population of cells. The most prominent structure defined by this antibody is a 110-kDa molecule that is different from the 135-kDa, 160-kDa, and 185-kDa glycoproteins identified by anti-CDw29 antibody and the 180-kDa glycoprotein identified by UCHL-1 antibody. It is, however, related to the molecule recognized by anti-Ta1, an activation Ag on T cells. Furthermore, although the Ta1 molecule is recognized by anti-1F7 mAb, the 1F7 family of structures also includes molecules distinct from Ta1.  相似文献   

16.
IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.  相似文献   

17.
18.
Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1β maturation and IFN-β promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1β and IFN-β compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1β production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1β production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1β and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.  相似文献   

19.
Interleukin (IL)-7 is a cytokine that plays a central role in the development, survival, and proliferation of T and B cell lymphocytes. Overexpression of IL-7 in mice (transgenic (Tg) IL-7) leads to both increased proliferation of early T and B cell progenitors and T and B cell lymphomas. Genetic evidence indicates that known IL-7 receptor (IL-7R)-dependent proteins, including prosurvival protein BCL-2, may not be solely responsible for the effects of IL-7. Other studies indicate that known IL-7-induced signaling proteins dock to a specific tyrosine (Tyr(449)) residue on the alpha-subunit of the IL-7R. We have previously shown in an IL-7Ralpha(449F) knock-in model that IL-7-induced lymphomas require Tyr(449) phosphorylation and that loss of this phosphorylation confers protection from disease. However, the mechanism by which this lymphoma protection occurs remains unclear. Using this genetic model, we aimed to identify novel prosurvival factors important for IL-7-mediated lymphocyte development and lymphomagenesis. An iTRAQ (isobaric tags for relative and absolute quantitation) proteomics analysis was performed comparing CD4(-)CD8(-) double negative T cell progenitors from mice overexpressing IL-7 (Tg IL-7) (lymphoma-prone) with Tg IL-7 mice with a mutated IL-7 receptor (Tg IL-7/IL-7Ralpha(449F)) (lymphoma-protected). Several proteins involved in survival, proliferation, and apoptosis were found to be differentially expressed between the two samples, and three proteins of particular interest, GIMAP4, BIT1, and FKBP51, were validated by immunoblot analysis.  相似文献   

20.
We have used T cells from B7-1-deficient TCR transgenic DO11.10 mice to demonstrate a functional role for B7-1 on T cells. B7-1-deficient DO11.10 T cells produce more IL-4 than wild-type DO11.10 T cells, suggesting that B7-1 expressed by T cells regulates the differentiation of IL-4-producing cells. In addition, we found that IL-4 inhibits B7-1 expression by wild-type DO11.10 T cells. Our results suggest that there is a reciprocal relationship between B7-1 expressed on T cells and IL-4 production, which results in a modulatory feedback loop. When high levels of IL-4 are produced by T cells, B7-1 expression by T cells is inhibited, which allows amplification of IL-4 production by these T cells. When low levels of IL-4 are produced by T cells, B7-1 expression by these T cells is increased, and a further reduction in IL-4 production follows. However, in addition to being influenced by IL-4, B7-1 expression by T cells is affected by peptide concentration and by B7 costimulation from APCs. The studies presented here demonstrate that B7-1 on T cells as well as on APCs regulates IL-4 production. However, whereas B7-1 expression on APCs can promote IL-4 production, IL-4 production is inhibited by B7-1 on T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号