首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterologous "prime-boost" regimens that involve priming with plasmid DNA vaccines and boosting with recombinant viral vectors have been shown to elicit potent virus-specific cytotoxic T-lymphocyte responses. Increasing evidence, however, suggests that the utility of recombinant viral vectors in human populations will be significantly limited by preexisting antivector immunity. Here we demonstrate that the coadministration of plasmid chemokines and colony-stimulating factors with plasmid DNA vaccines markedly increases the immunogenicity of DNA prime-recombinant adenovirus serotype 5 (rAd5) boost and DNA prime-recombinant vaccinia virus (rVac) boost vaccine regimens in BALB/c mice. In mice with preexisting anti-Ad5 immunity, priming with the DNA vaccine alone followed by rAd5 boosting elicited only marginal immune responses. In contrast, cytokine-augmented DNA vaccine priming followed by rAd5 vector boosting was able to generate potent immune responses in mice with preexisting anti-Ad5 immunity. These data demonstrate that plasmid cytokines can markedly improve the immunogenicity of DNA prime-viral vector boost vaccine strategies and can partially compensate for antivector immunity.  相似文献   

2.
3.
4.
Generating broad cellular immune responses against a diversity of viral epitopes is a major goal of current vaccine strategies for human immunodeficiency virus type 1 (HIV-1) and other pathogens. Virus-specific CD8(+) T-lymphocyte responses, however, are often highly focused on a very limited number of immunodominant epitopes. For an HIV-1 vaccine, the breadth of CD8(+) T-lymphocyte responses may prove to be critical as a result of the need to cover a wide diversity of viral isolates in the population and to limit viral escape from dominant epitope-specific T lymphocytes. Here we show that epitope modification strategies can alter CD8(+) T-lymphocyte epitope immunodominance hierarchies elicited by a DNA vaccine in mice. Mice immunized with a DNA vaccine expressing simian immunodeficiency virus Gag lacking the dominant D(b)-restricted AL11 epitope generated a marked and durable augmentation of responses specific for the subdominant D(b)-restricted KV9 epitope. Moreover, anatomic separation strategies and heterologous prime-boost regimens generated codominant responses against both epitopes. These data demonstrate that dominant epitopes can dramatically suppress the immunogenicity of subdominant epitopes in the context of gene-based vaccines and that epitope modification strategies can be utilized to enhance responses to subdominant epitopes.  相似文献   

5.
The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown limited comparative efficacy as a stand-alone platform in primates, due possibly to suboptimal gene expression or cell targeting. Here, regimens using DNA plasmids modified for optimal antigen expression and recombinant adenovirus (rAd) vectors, all encoding the glycoprotein (GP) gene from Angola Marburg virus (MARV), were compared for their ability to provide immune protection against lethal MARV Angola infection. Heterologous DNA-GP/rAd5-GP prime-boost and single-modality rAd5-GP, as well as the DNA-GP-only vaccine, prevented death in all vaccinated subjects after challenge with a lethal dose of MARV Angola. The DNA/DNA vaccine induced humoral responses comparable to those induced by a single inoculation with rAd5-GP, as well as CD4+ and CD8+ cellular immune responses, with skewing toward CD4+ T-cell activity against MARV GP. Vaccine regimens containing rAd-GP, alone or as a boost, exhibited cellular responses with CD8+ T-cell dominance. Across vaccine groups, CD8+ T-cell subset dominance comprising cells exhibiting a tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) double-positive functional phenotype was associated with an absence or low frequency of clinical symptoms, suggesting that both the magnitude and functional phenotype of CD8+ T cells may determine vaccine efficacy against infection by MARV Angola.The filoviruses Marburgvirus (MARV) and Ebolavirus (EBOV) are endemic primarily to central Africa and cause a severe form of viral hemorrhagic fever. Of all the filovirus strains or species, the Angola strain of MARV is associated with the highest mortality rate (90%) in humans observed to date (26). An increase in natural filovirus outbreak frequency over the past decade and the potential for use to cause deliberate human mortality have focused attention on the need for therapeutics and vaccines against filoviruses. While regulatory pathways have been proposed to facilitate licensing of a preventive vaccine against potently lethal pathogens such as these, there is as yet no licensed vaccine for use in humans, and efforts remain targeted to the optimization of vaccine performance in nonhuman primates (NHP) since this animal model recapitulates many aspects of disease pathogenesis observed in humans.Genetic vaccines are a promising approach for immunization against pathogens that are rapidly changing due to natural evolution, cross-species transmission, or intentional modification. Gene-based vaccines are produced rapidly and can be delivered by a variety of vectors. DNA vectors are advantageous because they are inherently safe and stable and can be used repeatedly without inducing antivector immune responses. However, while filovirus DNA vaccines have demonstrated efficacy in small animal models, efforts to induce protective immunity by injection of plasmid DNA alone into NHP have yielded less encouraging results. EBOV DNA vectors generate immune protection in mice and guinea pigs, but this has not been demonstrated in NHP unless DNA immunization is boosted with a viral vector vaccine (23). MARV DNA fully protects mice and guinea pigs but provides only partial protection in NHP (17). The discordant results between rodent and primate species may be due to the use of slightly modified infectious challenge viruses in rodent models or may reflect underlying differences in vaccine performance and the mechanisms of immune protection between rodents and NHP.In the current study, we examined whether DNA plasmid-based vaccines could be improved to increase potency in NHP and compared immunogenicity of this vaccine modality with those of viral vector and prime-boost approaches. DNA-vectored vaccines were modified by codon optimizing gene target inserts for enhanced expression in primates. These vectors induced antigen-specific cellular and humoral immune responses similar to immunization using a recombinant adenoviral vector and provided protection after lethal challenge with MARV Angola. However, macaques vaccinated with DNA vectors exhibited clinical symptoms associated with MARV hemorrhagic fever (MHF) that were absent in NHP receiving a single inoculation with recombinant adenovirus (rAd) vectors, suggesting qualitative differences in the immune responses elicited by the different modalities.  相似文献   

6.
G Ge  S Wang  Y Han  C Zhang  S Lu  Z Huang 《PloS one》2012,7(7):e41573
Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens.  相似文献   

7.
Plasmid DNA vaccination   总被引:2,自引:0,他引:2  
Plasmid DNA vaccination against tuberculosis is a very powerful and easy method for the induction of strong humoral responses, CD4+ mediated secretion of Th1 cytokines and CD8+ mediated CTL activity in mice. Tuberculosis DNA vaccines have not been assessed so far in humans, and clinical trials with DNA in general have been somewhat disappointing. However, numerous studies have reported on the potent priming capacity of plasmid DNA for Th1 and CD8+ mediated immune responses, which can be boosted subsequently by recombinant protein or recombinant pox-viruses. With respect to tuberculosis, prime/boost regimens with Mycobacterium bovis BCG vaccine are particularly promising and warrant further analysis.  相似文献   

8.
DNA疫苗能够诱导机体产生特异的细胞免疫和体液免疫反应,在肿瘤和感染性疾病的疫苗开发中显示出巨大的潜能。以HIV-1核心蛋白P24为抗原基因,构建pVAX1-p24 DNA,经Western blotting和动物活体成像检测证明,pVAX1 DNA携带的外源基因可以在293T 细胞和小鼠肌肉组织有效表达。采用不同的免疫策略免疫BALB/c小鼠 (DNA/DNA,DNA/Protein),实验结果表明:pVAX1-p24单独免疫BALB/c小鼠,可诱导明显的体液免疫及细胞免疫反应;pVAX1-p24与P24蛋白联合免疫诱导的体液免疫反应高于pVAX1-p24单独免疫,所获得的抗体滴度是单独免疫的7.3~8.0倍,但细胞免疫反应则不及单独免疫组。研究结果表明采取不同的免疫策略可以诱导产生不同的免疫反应,根据具体情况调整免疫策略将获得更好的免疫效果。这些研究为艾滋病疫苗的研发提供了实验依据。  相似文献   

9.
ABSTRACT: BACKGROUND: The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans. METHODS: Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP). RESULTS: Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of a DNA vaccine as compared to immunizations with a considerably lower dose. Biojector delivery followed by EP, however, overcame this observed dose restriction and induced significantly higher cellular and humoral immune responses after immunization with a high dose of DNA. Furthermore, a close correlation between in vivo antigen expression and cell-mediated immune responses was observed. CONCLUSIONS: These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.  相似文献   

10.
The “A, B and C” of Her-2 DNA vaccine development   总被引:2,自引:1,他引:1  
INTRODUCTION: The development of Her-2 DNA vaccine has progressed through three phases that can be categorized as phase "A": the pursuit of Her-2 as a tumor-associated "antigen", phase "B": tilting the "balance" between tumor immunity and autoimmunity and phase "C": the on-going "clinical trials". MATERIALS AND METHODS: In phase "A", a panel of human ErbB-2 or Her-2 plasmids were constructed to encode non-transforming Her-2 derivatives. The immunogenicity and anti-tumor activity of Her-2 DNA vaccines were tested in human Her-2 transgenic mice with or without the depletion of regulatory T cells (Tregs). However, Treg depletion or other immune modulating regimens may increase the risk of autoimmunity. In phase "B", the balance between tumor immunity and autoimmunity was assessed by monitoring the development of experimental autoimmune thyroiditis (EAT). To test the efficacy of Her-2 DNA vaccines in cancer patients, clinical trials have been initiated in phase "C". RESULTS AND CONCLUSIONS: Significant anti-Her-2 and anti-tumor activity was observed when Her-2 transgenic mice were electro-vaccinated after Treg depletion. Susceptibility to EAT was also enhanced by Treg depletion and there was mutual amplification between Her-2 immunity and EAT development. Although Tregs regulate both EAT and Her-2 immunity, their effector mechanisms may differ. It may be possible to amplify tumor immunity with improved strategies that can by-pass undue autoimmunity. Critical information will be revealed in the next decade to expedite the development of cancer vaccines.  相似文献   

11.
Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.  相似文献   

12.

Background

We have previously demonstrated protective efficacy against B. melitensis using formulations of naked DNA vaccines encoding genes ialB and omp25. The present study was undertaken to further understand the immune response generated by the protective vaccination regimens and to evaluate cationic liposome adsorption as a delivery method to improve vaccine utility.

Methods

The protective efficacy and immunogenicity of vaccines delivered as four doses of naked DNA, a single dose of naked DNA or a single dose of DNA surface adsorbed to cationic liposomes were compared using the BALB/c murine infection model of B. melitensis. Antigen-specific T cells and antibody responses were compared between the various formulations.

Results

The four dose vaccination strategy was confirmed to be protective against B. melitensis challenge. The immune response elicited by the various vaccines was found to be dependent upon both the antigen and the delivery strategy, with the IalB antigen favouring CD4+ T cell priming and Omp25 antigen favouring CD8+. Delivery of the p- ialB construct as a lipoplex improved antibody generation in comparison to the equivalent quantity of naked DNA. Delivery of p- omp25 as a lipoplex altered the profile of responsive T cells from CD8+ to CD4+ dominated. Under these conditions neither candidate delivered by single dose naked DNA or lipoplex vaccination methods was able to produce a robust protective effect.

Conclusions

Delivery of the p- omp25 and p- ialB DNA vaccine candidates as a lipoplex was able to enhance antibody production and effect CD4+ T cell priming, but was insufficient to promote protection from a single dose of either vaccine. The enhancement of immunogenicity by lipoplex delivery is a promising step toward improving the practicality of these two candidate vaccines, and suggests that this lipoplex formulation may be of value in situations where improvements to CD4+ responses are required. However, in the case of Brucella vaccine development it is suggested that further modifications to the candidate vaccines and delivery strategies will be required in order to deliver sustained protection.  相似文献   

13.
In an effort to develop an AIDS vaccine that elicits high-frequency cytotoxic-T-lymphocyte (CTL) responses with specificity for a diversity of viral epitopes, we explored two prototype multiepitope plasmid DNA vaccines in the simian-human immunodeficiency virus/rhesus monkey model to determine their efficiency in priming for such immune responses. While a simple multiepitope vaccine construct demonstrated limited immunogenicity in monkeys, this same multiepitope genetic sequence inserted into an immunogenic simian immunodeficiency virus gag DNA vaccine elicited high-frequency CTL responses specific for all of the epitopes included in the vaccine. Both multiepitope vaccine prototypes primed for robust epitope-specific CTL responses that developed following boosting with recombinant modified vaccinia virus Ankara vaccines expressing complete viral proteins. The natural hierarchy of immunodominance for these epitopes was clearly evident in the boosted monkeys. These studies suggest that multiepitope plasmid DNA vaccine-based prime-boost regimens can efficiently prime for CTL responses of increased breadth and magnitude, although they do not overcome predicted hierarchies of immunodominance.  相似文献   

14.
Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.  相似文献   

15.
Advances in molecular biology and immunology have renewed interest in the development of vaccines for the treatment or prevention of cancer. Research over the past 10 years has focused on the identification of suitable tumour antigens to use as targets for a variety of vaccine strategies. Carcinoembryonic antigen (CEA) was one of the first tumour antigens described, and is commonly expressed by a wide range of adenocarcinomas. Recent studies have identified several human-leukocyte-antigen-restricted epitopes (short peptides) within the CEA protein that can be recognised by human T lymphocytes (T cells). Although CEA-expressing tumour cells are generally weakly recognised by the immune system, several new strategies have been used to enhance immune responses against CEA. This includes using antibodies directed against CEA; inserting the CEA gene into recombinant viruses and bacteria as viral and bacterial vaccines; pulsing the CEA protein, peptides, DNA or RNA onto dendritic cells (specialised antigen-presenting cells); and combining CEA vaccines with cytokines or co-stimulatory molecules to increase vaccine effectiveness. Other factors that might be important in establishing systemic immunity against CEA are the dose, route, timing, and choice of vector and adjuvants for vaccine administration. Further research in understanding the fundamental processes involved in tumour-cell recognition by the immune system, better animal models, and improved clinical trial designs will help to define the full potential of CEA as a target for cancer vaccine development.  相似文献   

16.
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1( )-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.  相似文献   

17.
DNA疫苗为编码抗原蛋白的真核表达载体,注入体内后在原位表达所编码的抗原并诱导免疫应答,在预防感染、治疗自身免疫性疾病、过敏性疾病和肿瘤等疫病中有着很好的应用前景。但与灭活疫苗相比,其免疫效价还比较低。有多种策略能够增强或调节DNA疫苗诱导的免疫应答,其中,作为外源基因载体的质粒的组成及插入的有关基因均可直接或间接地影响免疫反应的效果,在构建DNA疫苗质粒时,加入细胞因子、融合信号、泛素等基因以及ISS序列,另外还可以通过设计一些对抗原提成细胞有影响的分子共注射,以及加入转移分子,都可以明显增强DNA疫苗的免疫效果,从而有利于研制更有效的DNA疫苗。  相似文献   

18.
DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV-1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8+ T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.  相似文献   

19.
An important limitation of DNA immunization in nonhuman primates is the difficulty in generating high levels of antigen-specific antibody responses; strategies to enhance the level of immune responses to DNA immunization may be important in the further development of this vaccine strategy for humans. We approached this issue by testing the ability of molecular adjuvants to enhance the levels of immune responses generated by multicomponent DNA vaccines in rhesus macaques. Rhesus macaques were coimmunized intramuscularly with expression plasmids bearing genes encoding Th1 (interleukin 2 [IL-2] and gamma interferon)- or Th2 (IL-4)-type cytokines and DNA vaccine constructs encoding human immunodeficiency virus Env and Rev and simian immunodeficiency virus Gag and Pol proteins. We observed that the cytokine gene adjuvants (especially IL-2 and IL-4) significantly enhanced antigen-specific humoral immune responses in the rhesus macaque model. These results support the assumption that antigen-specific responses can be engineered to a higher and presumably more desirable level in rhesus macaques by genetic adjuvants.  相似文献   

20.
Conventional treatment approaches for malignant tumors are highly invasive and sometimes have only a palliative effect. Therefore, there is an increasing demand to develop novel, more efficient treatment options. Increased efforts have been made to apply immunomodulatory strategies in antitumor treatment. In recent years, immunizations with naked plasmid DNA encoding tumor-associated antigens have revealed a number of advantages. By DNA vaccination, antigen-specific cellular as well as humoral immune responses can be generated. The induction of specific immune responses directed against antigens expressed in tumor cells and displayed e.g., by MHC class I complexes can inhibit tumor growth and lead to tumor rejection. The improvement of vaccine efficacy has become a critical goal in the development of DNA vaccination as antitumor therapy. The use of different DNA delivery techniques and coadministration of adjuvants including cytokine genes may influence the pattern of specific immune responses induced. This brief review describes recent developments to optimize DNA vaccination against tumor-associated antigens. The prerequisite for a successful antitumor vaccination is breaking tolerance to tumor-associated antigens, which represent "self-antigens." Currently, immunization with xenogeneic DNA to induce immune responses against self-molecules is under intensive investigation. Tumor cells can develop immune escape mechanisms by generation of antigen loss variants, therefore, it may be necessary that DNA vaccines contain more than one tumor antigen. Polyimmunization with a mixture of tumor-associated antigen genes may have a synergistic effect in tumor treatment. The identification of tumor antigens that may serve as targets for DNA immunization has proceeded rapidly. Preclinical studies in animal models are promising that DNA immunization is a potent strategy for mediating antitumor effects in vivo. Thus, DNA vaccines may offer a novel treatment for tumor patients. DNA vaccines may also be useful in the prevention of tumors with genetic predisposition. By DNA vaccination preventing infections, the development of viral-induced tumors may be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号