首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between heterozygosity at nine enzyme loci and both size and growth in rainbow trout ( Salmo gairdneri ) reared at either low (LRT) or high (HRT) ration for 84 days is reported. The experimental fish were progeny produced from a pooled mating of 25 female and 25 male rainbow trout captured in spawning condition at the Ganaraska River, Ontario. There is a significant negative regression between the number of heterozygous loci per fish and size (fork length and weight) among fish at the beginning of the experiment. Heterozygotes at two loci, Sod and Mdh3,4 , were significantly smaller than homozygotes. A significant negative regression between multilocus heterozygosity and size was detectable among the fish reared at HRT for 84 days but not at LRT. Ration appeared to affect the strength of the association between heterozygosity and growth because at HRT homozygotes at the majority of loci grew faster than heterozygotes, but the reverse was true at LRT.  相似文献   

2.
Volkova NE  Vorob'eva LI 《Genetika》2005,41(5):614-619
Components of mating behavior of Drosophila melanogaster mutant and wild-type strains were studied with respect to fitness. The magnitude of the effect of genotype on the male mating activity, female sexual receptivity, fertility and viability was determined. Strong positive correlation was found between the male mating activity and fitness components. It was shown that mating of strains contrasting in sexual behavior features can be accompanied by both heterosis and maternal effect. Inheritance coefficients were determined for sexual behavior components.  相似文献   

3.
A two-locus diploid model of sexual selection is presented in which the two loci govern, respectively, a trait limited in expression in one sex (generally male) and the mating preferences of the other sex (generally female). The viability of a male depends on its genotype at the trait locus. In contrast, all females are equally viable and all individuals are equally fertile with respect to the two loci. Near fixation at both loci, evolution at the mating locus is neutral and hence a new mating preference allele will increase only through random genetic drift or through a correlated response to the increase of a new advantageous trait allele. If, however, a polymorphism is already maintained at the trait locus through overdominance in fitness then the increase of a rare preference allele depends only on the recombination rate between the loci and not on the new preference scheme.  相似文献   

4.
Sexual selection is modeled with a male viability-reducing trait and a female mating preference for that trait both of which are culturally transmitted. Both the male trait and the female preference are transmitted only between same-sex individuals, so that non-random association between the trait and the preference, which would give rise to a Fisherian runaway process, cannot arise. Inclusion of an autosomal gene that confers a female predisposition to acquire a certain preference is shown to allow the coevolution of the male trait and the female preference by a Fisherian process. This holds true even when the female preference has a slight viability cost, provided the male cultural transmission is not perfect. It is also suggested that a Fisherian process can be more easily initiated in these models than in the conventional genetic models. Furthermore, a Fisherian process may cause cultural transmission of female preference to evolve. Additionally, polymorphism can be maintained at the predisposition locus if heterozygous females have a stronger predisposition to acquire the preference than homozygotes. Our models may be applicable to the case when the male trait is a Y-linked genetic or environmentally determined trait.  相似文献   

5.
The female mice of DDK strain are almost infertile when mated with males from other strains. This phenomenon is caused by the early death of F1 embryos owing to the incompatibility system attributed to the ovum mutant (Om) locus on Chromosome (Chr) 11 and known as DDK syndrome. In the present study, DDK females were found to be fully fertile in the intersubspecific matings with the males of two wild mouse-derived strains, MOM (originated from Japanese wild mice, Mus musculus molossinus) and Cas (originated from Philippine wild mice, M. m. castaneus), indicating that no incompatibility exists between DDK oocytes and spermatozoa of MOM and Cas strains. Furthermore, this compatibility has been confirmed by the following two findings: (1) Normal fertility was shown by the two types of backcrosses, DDK females x F(1) (DDK female x MOM male) males and DDK females x F(1) (DDK female x Cas male) males; and (2) the offspring from these backcrosses segregated equally into the homozygotes and heterozygotes as genotyped by the microsatellite markers closely linked to Om locus. MOM and Cas strains would be useful for further investigations on the Om locus. On the other hand, the litter size of F(1) [C57BL/6Cr (B6) female x Cas male] females mated with B6 males was about half that of the mating with DDK males. It would be interesting to investigate whether this reduction in fertility is related to the Om locus or not.  相似文献   

6.
Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in transgene frequency after a simulated transgenic release. With this method, we grouped various aspects of an organism's life cycle into six net fitness components: juvenile viability, adult viability, age at sexual maturity, female fecundity, male fertility, and mating advantage. We estimated these components for wild-type and transgenic individuals using the fish, Japanese medaka (Oryzias latipes). We generalized our model's predictions using various combinations of fitness component values in addition to our experimentally derived estimates. Our model predicted that, for a wide range of parameter values, transgenes could spread in populations despite high juvenile viability costs if transgenes also have sufficiently high positive effects on other fitness components. Sensitivity analyses indicated that transgene effects on age at sexual maturity should have the greatest impact on transgene frequency, followed by juvenile viability, mating advantage, female fecundity, and male fertility, with changes in adult viability, resulting in the least impact.  相似文献   

7.
The effect of delayed female mating for the mushroom fungus gnat Lycoriella ingenua is investigated. We examine the effect of delaying female mating on the fertility and egg viability of female flies that have a mating delay of 0–5 days after emergence. Male fly age is held constant. Female age does not impact male acceptance and most flies copulate within seconds of pairing. We find that female flies experiencing mating delays of 0–4 days after emergence lay a similar number of eggs onto artificial substrates. Females that experience a mating delay of 5 days lay 54% fewer eggs than those that mate on day 0 (day of emergence). There is no effect of mating delay on the percentage of larvae that emerge. The results of the present study indicate that mating delays have little effect on the fertility or fecundity of the mushroom fungus pest L. ingenua.  相似文献   

8.
Based on the phenotype‐linked fertility hypothesis, sexual selection should favour females that can accurately assess the recent mating history of available sexual partners and preferentially avoid mating with recently‐mated males [who may be sperm depleted (SD)] so as to minimize the risk of their eggs not being fertilized. This hypothesis has received to date only limited attention and empirical support. Therefore, in the current study, we investigated experimentally whether females of a vertebrate species, the Trinidadian guppy (Poecilia reticulata), are able to assess the recent mating history of males, and thus potentially their functional fertility, and choose to avoid mating with males that appear to have recently mated and who may be sperm limited. Individual virgin females were first given a dichotomous choice between a male that had not been recently observed to interact sexually with another female (i.e. not sperm‐depleted) and another male that had been observed to interact sexually with a female (i.e. potentially sperm‐depleted) as sexual partners. Paired males were matched for body length and coloration. Immediately following this test, the focal females were subjected to a free‐swimming mate‐choice test using the same paired stimulus males. As predicted, on average, female guppies avoided the apparently recently‐mated (and potentially sperm‐depleted) male and exhibited a significant preference for the other male not recently observed mating (and thus not likely sperm limited) during both tests. We do not yet fully understand the underlying mechanisms of this preference. Therefore, further research on the particular cues that females use to assess the recent mating history and fertility status of males is required.  相似文献   

9.
There are two reasons why researchers are interested in the phenotypic relationship between the expression of male secondary sexual characters (SSCs) and ‘ejaculate quality’ (defined as sperm/ejaculate traits that are widely assumed to increase female fertility and/or sperm competitiveness). First, if the relationship is positive then females could gain a direct benefit by choosing more attractive males for fertility assurance reasons (‘the phenotype‐linked fertility’ hypothesis). Second, there is much interest in the direction of the correlation between traits favoured by pre‐copulatory sexual selection (i.e. affecting mating success) and those favoured by post‐copulatory sexual selection (i.e. increasing sperm competitiveness). If the relationship is negative this could lead to the two forms of selection counteracting each other. Theory predicts that the direction of the relationship could be either positive or negative depending on the underlying genetic variance and covariance in each trait, the extent of variation among males in condition (resources available to allocate to reproductive traits), and variation among males in the cost or rate of mating. We conducted a meta‐analysis to determine the average relationship between the expression of behavioural and morphological male secondary sexual characters and four assays of ejaculate quality (sperm number, viability, swimming speed and size). Regardless of how the data were partitioned the mean relationship was consistently positive, but always statistically non‐significant. The only exception was that secondary sexual character expression was weakly but significantly positively correlated with sperm viability (r = 0.07, P < 0.05). There was no significant difference in the strength or direction of the relationship between behavioural and morphological SSCs, nor among relationships using the four ejaculate quality assays. The implications of our findings are discussed.  相似文献   

10.
Abstract:  The effect of diamondback moth (DBM), Plutella xylostella (Lep., Plutellidae) male and female multiple mating on fecundity, fertility, and longevity was studied. Males could mate for five times with virgin females during scotophase. The successful copulation rates, fecundity of female, and longevity of both females and males decreased when male mating times increased, whereas copulation duration increased. Correlation coefficient between copulation duration and male mating times was significant ( r  = 0.7358, P = 0.0001, spearman rank-order correlation). There were linear relationships between mating history of males and longevities of males and females, and regression relationships between them were significant. Mated females had similar daily reproductive pattern, which laid the most eggs on the first day after mating in spite of their mates' mating history. Virgin females laid some infertile eggs before they died. Most of the females mated once during their lifespan but 19.9% of females mated twice when one female kept with one male during scotophase. There were no significant differences in the fecundity, fertility and longevity between the single- and twice-mated females. Correlation coefficient between copulation duration and female mating times was not significant ( r  = 0.0860, P = 0.8575). Results suggested that DBM females may be monandrous. Multiple mating did not increase male or female mating fitness.  相似文献   

11.
Selection due to variation in the fecundity among matings of genotypes with respect to many loci each with two alleles is studied. The fitness of a mating depends only on the genotypic distinction between homozygote and heterozygote at each locus in the two individuals, and differences among loci are allowed. This symmetric fertility model is therefore a generalization of the multiple-locus symmetric viability model. The phenomena seen in the two-locus symmetric fertility model generalize—e.g., the possibility of joint stability of equilibria with linkage equilibrium and with linkage disequilibrium, and the existence of different types of totally polymorphic equilibria with the gametic proportions in linkage equilibrium. The central equilibrium with genotypic frequencies in Hardy-Weinberg proportions and gametic frequencies in Robbins proportions exists for all symmetric fertility models. For some symmetric fertility regimes additional equilibria exist with gametic frequencies in linkage equilibrium and with genotypic frequencies in Hardy-Weinberg proportions at all except one locus. These equilibria may exist in the dioecious symmetric viability model, and then they will be locally stable. For free recombination the stable equilibria show linkage equilibrium, but several of these with different numbers of polymorphic loci may be stable simultaneously.  相似文献   

12.
Components of mating behavior of Drosophila melanogaster mutant and wild-type strains were studied with respect to fitness. The magnitude of the effect of genotype on the male mating activity, female sexual receptivity, fertility and viability was determined. Strong positive correlation was found between the male mating activity and fitness components. It was shown that mating of strains contrasting in sexual behavior features can be accompanied by both heterosis and maternal effect. Inheritance coefficients were determined for sexual behavior components.__________Translated from Genetika, Vol. 41, No. 5, 2005, pp. 614–619.Original Russian Text Copyright © 2005 by Volkova, Vorobjova.  相似文献   

13.
Optimal mating frequencies differ between sexes as a consequence of the sexual differentiation of reproductive costs per mating, where mating is normally more costly to females than males. In mating systems where sexual reproduction is costly to females, sexual conflict may cause both direct (i.e. by reducing female fecundity or causing mortality) and indirect (i.e. increased risk of mortality, reduced offspring viability) reductions in lifetime reproductive success of females, which have individual and population consequences. We investigated the direct and indirect costs of multiple mating in a traumatically inseminating (TI) predatory Warehouse pirate bug, Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae), where the male penetrates the female's abdomen during copulation. This study aimed to quantify the effects of TI on female fecundity, egg viability, the lifetime fecundity schedule, longevity and prey consumption in this cosmopolitan biocontrol agent. We found no difference in the total reproductive output between mating treatments in terms of total eggs laid or offspring viability, but there were significant differences found in daily fecundity schedules and adult longevity. In terms of lifetime reproduction, female Warehouse pirate bugs appear to be adapted to compensate for the costs of TI mating to their longevity.  相似文献   

14.
Population genetic models have shown that female choice is a potential cause of the evolution of male display. In these models the display is assumed to be the immediate object of female choice. Here I present an explicit genetic model that shows that male display can evolve as a consequence of female choice even when the display is not the immediate object of choice. When females initially base their preferences on the existence of variance in a cue that is correlated with male viability, a rare display can evolve to fixation if it amplifies the previously recognized differences in males, (i.e. if it increases the resolution power of females with respect to the original cue). By definition, amplifying displays (or amplifiers) increase mating success of the more viable males and decrease mating success of the less viable males. Therefore, the higher the frequency of the preferred, more viable males, the more likely it is that amplifiers will evolve to fixation. The evolution of an amplifier is further facilitated by a genetic association that is built up between the amplifier allele and the more viable allele. If the expression of the amplifier is limited to the more viable males, the amplifier will evolve to fixation provided only that the change in total fitness to the more viable males (higher mating success, lower viability), is positive.  相似文献   

15.
Sexually antagonistic coevolution is predicted to lead to the divergence of male and female genotypes related to the effects of substances transferred by males at mating on female physiology. The outcome of mating should thus depend on the specific combination of mating genotypes. Although mating has been shown to influence female immunity in diverse insect taxa, a male–female genotype-by-genotype effect on female immunity post mating remains largely unexplored. Here, we investigate the effects of mating on female decorated cricket baseline immunity and the potential for a male-genotype-by-female-genotype interaction affecting this response. Females from three distinct genotypic backgrounds were left unmated or singly mated in a fully reciprocal design to males from the same three genotypic backgrounds. Hemocytes and hemocyte microaggregations were quantified for female cellular immunity, and phenoloxidase, involved in melanization, and antibacterial activity for humoral immunity. In this system, female cellular immunity was more reactive to mating, and mating effects were genotype-dependent. Specifically, for hemocytes, a genotype-by-mating status interaction mediated the effect of mating per se, and a significant male–female genotype-by-genotype interaction determined hemocyte depletion post mating. Microaggregations were influenced by the female’s genotype or that of her mate. Female humoral immune measures were unaffected, indicating that the propensity for post-mating effects on females is dependent on the component of baseline immunity. The genotype-by-genotype effect on hemocytes supports a role of sexual conflict in post-mating immune suppression, suggesting divergence of male genotypes with respect to modification of female post-mating immunity, and divergence of female genotypes in resistance to these effects.Subject terms: Non-model organisms, Sexual selection, Behavioural ecology, Evolutionary ecology, Genetic interaction  相似文献   

16.
We describe results for a diploid, two-locus model for the evolution of a female mating preference directed at an attractive male trait that is subject to viability and/or fertility selection. Using computer simulation, we studied a large, random sample of parameter values, assuming additivity of alleles at the preference locus and partial dominance at the trait locus. Simulation results were classifiable into nine types of parameter sets, each differing in equilibria, evolutionary trajectories, and rates of evolution. For many parameters, evolutionary trajectories converged on curves within the allelic frequency plane and subsequently evolved along the curves toward fixation. Neutrally stable curves of equilibria did not occur in Fisherian models that assume only viability and sexual selection unless there is complete dominance at the trait locus. The Fisherian models also exhibited oscillation of allelic frequencies and unique polymorphic equilibria. “Sexy son” models in which attractive males had reduced fertility were much less likely to lead to increase in traits and preferences than were the Fisherian models. However, if less fertile males had increased viability, trait polymorphisms and fixation of rare “sexy” alleles occurred. In general, the behavior of the diploid model was much more complex than that of analogous haploid or polygenic models.  相似文献   

17.
Females across many taxa may mate with several males or mate more than once with the same male within one reproductive event. Although many researchers have discussed the effects of multiple mating on reproductive success of females, few studies have attempted to disentangle whether the reproductive success of females differs with respect to whether females mate with multiple males or mate more than once with one male. In this study, we hypothesized that female leopard geckos (Eublepharis macularius) increase aspects of their reproductive success, such as fecundity, fertility and relative clutch mass, by mating more than once within one reproductive event, either by mating repeatedly with the same male or multiply mating with different males. We controlled for the potentially confounding variables of mating frequency and mate number by allowing females to mate once with one male, twice with the same male, or twice with two different males. We found that females that mated with more than one male laid more clutches, exhibited increased egg fertility and invested more in clutches relative to females that mated only once with one male, whereas females that mated twice to the same male were intermediate for these variables. Thus, reproductive success is higher among female leopard geckos that mated with more than one male compared to female leopard geckos that mated only once.  相似文献   

18.
Zakharov IA 《Genetika》2005,41(4):508-519
Genetic characteristics of intratetrad mating, i.e., fusion of haploid products of one meiotic division, are considered. Upon intratetrad mating, the probability of homozygotization is lower than that upon self-fertilization, while heterozygosity at genes linked to the mating-type locus, which determines the possibility of cell fusion, is preserved. If the mating-type locus is linked to the centromere, the genome regions adjoining the centromeres of all chromosomes remain heterozygous. Intratetrad mating is characteristic of a number of fungi (Saccharomyces cerevisiae, Saccharomycodes ludwigii, Neurospora tetrasperma, Agaricus bisporus, Microbotrium violaceum, and others). Parthenogenetic reproduction in some insects also involves this type of fusion of nuclei. Intratetrad mating leads to the accumulation of haplolethals (i.e., lethals manifesting in haploid cells but not hindering their mating) in pericentric chromosome regions. Since heterozygosity increases viability of an organism, recombination has been suppressed during evolution in fungi characterized by intratetrad mating, which ensures heterozygosity of the most part of the genome.  相似文献   

19.
Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating preferences to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to 'precopulatory' male mate choice, some insects exhibit 'cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating preferences are those that tend to maximize a male's expected fertilization success from each mating. Such preferences tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform ('mating investment') Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating preferences have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways.  相似文献   

20.
In his mathematical treatment of Fisher's ideas on sexual selection (so-called runaway selection) Lande (1981) predicted that males may evolve increasingly elaborate sexual characters despite opposing viability selection as a consequence of the associated costs. Lande thereby assumed that female mate preferences are not subject to selection since (1) females are all inseminated and (2) the quantity and quality of their offspring are independent of the female's mate preferences. Kirkpatrick (1985) removed the latter assumption and investigated the consequences for the mean phenotype with respect to both female and male traits. He also explored the dynamics of the (co)-variance matrix by numerical methods. In this paper we consider a simpler model with just two multi-allelic loci. This enables us to derive explicit expressions for (co)-variances under steady state conditions. Rather than assume natural selection through differential fertility (as in Kirkpatrick, 1985), we take sexual selection on females into account by modelling the preference-dependent risk that females remain unmated. We argue that this wallflower effect is a realistic feature of any mating system, since it merely depends on the existence of (1) variation in mating preferences and (2) a finite mating season. Our approach provided an insight into the dynamic behaviour of the means of the phenotypes. This is because the dynamics of the means depend on the steady state (co)-variance matrix. Thus, an insight into the former requires explicit expressions for the latter. Whereas Lande and Kirkpatrick predicted runaway processes, despite opposing viability selection, our model predicts a globally stable steady state, i.e. no runaway, even without opposing viability selection (under the assumption of an asymptotically stable steady state of the (co)-variances. Admittedly, we have no analytic proof of this stability but only support for it, based on simulations.) The absence of the runaway processes in our model is caused by the wallflower effect, since it imposes constraints on the steady state of the (co)-variance matrix. When mutational input applies to female traits but not to male traits, explicit expressions for the (co)-variances under steady state conditions can be derived, and these show that: (1) both the genetic covariance and the variance of male traits are equal to zero, but (2) the variance of the female trait exceeds to zero. Should there be mutational input influencing the male trait, then these results would suggest that the male-to-female ratio of variances is much smaller than unity. This prediction is of tremendous importance for speciation through founding events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号