首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subtle differences of external traits characterize species of rodents in the Neotropical genus Graomys. On the other hand, the species differ markedly in chromosome number. In the present study, we evaluate the possible evolutionary forces involved in the evolution of the genus by assessing the degree of intra‐ and interspecific genetic and morphological variation. A phylogenetic analysis demonstrates the existence of at least three species with high levels of genetic distance (10%), which diverged between 1 and 1.5 Mya. Neither Graomys griseoflavus, nor Graomys chacoensis present marked phylogeographical structure. Regarding morphological characters, these species show shape differences in the skull that could be attributable to differences in the local conditions they inhabit, being more marked in G. griseoflavus than in G. chacoensis. The skull shape of G. chacoensis could have evolved under genetic drift, whereas evidence reported in the present study indicates that this character could be under selective pressures in G. griseoflavus. Reconstruction of the ancestral area suggests that G. griseoflavus originated in the central Monte desert, whereas G. chacoensis originated in the Chaco ecoregion surrounding the austral extreme of the Yungas rainforest. Subsequently, both species would have undergone demographic and geographical expansions almost simultaneously, starting approximately 150 000–175 000 years ago. The complex evolutionary history of the genus could be partly explained by the decoupling of morphological, karyological and molecular traits.  相似文献   

2.
There are examples of coexisting species with similar morphology and ecology, in apparent contradiction to competition theory. Shrews (Soricidae) are a paradigmatic example of this because members of this group exhibit a conserved body form, relatively low variability in lifestyle, and, in many cases, a sympatric distribution. Here, we combined geometric morphometrics and ecological niche modeling to test whether diversification of soricid species inhabiting the Iberian Peninsula has been driven by niche divergence or, conversely, whether niche conservatism has played a paramount role in this process. We also examined whether pairwise morphological distances increase as the degree of niche overlap between species becomes greater, as would be expected if interspecific competition promotes morphological differentiation. Our results showed that water shrews (Neomys), white‐toothed shrews (Crocidurinae), and red‐toothed shrews (Soricinae) are clearly differentiated in terms of both skull shape and mandible shape. However, we found a lack of phylogenetic signal in most morphological traits, indicating that closely related species are not more similar than expected by random chance. Notably, water shrews show a more “triangular” or sharp skull than white‐toothed and red‐toothed shrews, probably as an adaptation to their semiaquatic lifestyle. In agreement with the phenotypic data, climatic traits (mean annual temperature and annual precipitation) were highly labile and sister taxa showed extensive differentiation in their realized niche space. Finally, we found that phenotypic distances between species tend to increase as the degree of niche overlap increases, suggesting that interspecific competition is an important factor in determining the level of morphological resemblance among relatives. Overall, our results indicate that the existence of limited morphological disparity in a given group does not necessarily imply the existence of a niche conservatism signature.  相似文献   

3.
Size and shape changes in the skull of the genus Gerbillus were investigated using geometric morphometrics. Six species from Tunisia were studied (G. gerbillus, G. campestris, G. nanus, G. tarabuli, G. simoni and G. latastei). Statistical analyses of shape variability allowed us to discriminate three morphological groups which are congruent with the three groups suggested by previous morphological and molecular studies. However, our results contrast with previous molecular investigations. In fact, according to results obtained by the use of principal component analysis, canonical variate analysis and UPGMA, we found a higher degree of divergence between the subgenus Dipodillus and the other two subgenera Gerbillus and Hendecapleura. This fact suggests that the morphometric differences observed among species within the genus Gerbillus are not mainly related to phylogeny. To reconciliate the molecular and morphological approaches, we propose a hypothesis of differential rates of phenotypic evolution in the genus Gerbillus. In this view, the species belonging to the subgenus Dipodillus evolved apomorphic features of the skull likely related to a higher degree of habitat specialization. By contrast, the more generalist Gerbillus and Hendecapleura subgenera show less differentiated plesiomorphic morphology.  相似文献   

4.
Capuchin monkeys (Cebus) are one of the genera with the widest distribution among Neotropical primates (New World Monkeys, Platyrrhini), accompanied by an elevated genetic, phenotypic, behavioral, morphological, and ecological diversity, both at the interspecific and population levels. Despite being one of the most studied primate genera, this high diversity has led to a particularly complex and controversial taxonomy. In this contribution, we explored the patterns of skull size and shape variation among the southernmost distributed populations of Cebus using three-dimensional geometric morphometric techniques. Results showed a marked morphological differentiation (in size and shape) between previously recognized species (C. nigritus and southern C. libidinosus), and also among C. libidinosus populations, which were quantitatively related with the geographic distance between them. This pattern supports a differentiation between the northwestern Argentina and southern Bolivia and Paraguay forms. Other taxonomic implications are also discussed.  相似文献   

5.
Using a geometric morphometric approach, we explored the variation in skull size and skull shape in banded newts (genus Ommatotriton). The genus Ommatotriton is represented by two allopatric, genetically well‐defined species: Ommatotriton ophryticus and O. vittatus. Within each species, two subspecies have been recognised. The samples used in this study cover the geographical and genetic variation within each species. We found statistically significant variation in skull size between species and among populations within species. When corrected for size, there was no significant variation in shape between species. Our results indicate that the variation in skull shape within the genus Ommatotriton is almost entirely due to size‐dependent, allometric shape changes. The exception is the shape of the ventral skull in males. Males of O. ophryticus and O. vittatus significantly diverge in the shape of the ventral cranium. The ventral skull, more precisely the upper jaw and palate, is directly functionally related to feeding. In general, our results indicate that allometry is a significant factor in the morphological variation of banded newts. However, the divergence in the ventral skull shape of males indicates that sexual selection and niche partitioning may have influenced the evolution of skull shape in these newts.  相似文献   

6.
7.
We tested the hypothesis that skull shape within the genus Mus may vary with geographic location by assessing the extent and spatial distribution of phenotypic skull variation within and among two wild mouse species, M. macedonicus and M. cypriacus, using traditional and geometric morphometrics including a rather novel application of sliding semilandmarks. Shape was shown to be significantly correlated both with longitude and latitude in M. macedonicus, yet the correlation between morphometric and geographic distances was not significant, and morphometric differences between Asian and European populations were not higher than those within the particular continents. The phylogenetic signal was found to be stronger in dental characters than in cranial ones, however, overall concordance between the pattern of morphometric variation and the presumed history of M. macedonicus was rather weak. In both species, the dorsal and ventral sides of the skull were shown to covary in many aspects though there were also some differences between them, making the functional interpretation of these differences difficult. Discrimination between M. cypriacus and M. macedonicus as well as discrimination between two M. macedonicus subspecies was highly reliable using both traditional and geometric morphometric tools to analyze skull measurements.  相似文献   

8.
9.
The South American group of rodents known as Graomys griseoflavus comprises two sibling species differing only in diploid chromosomal complement: G. griseoflavus (2n = 36, 37 and 38) and G. centralis (2n=42). Reproductive barriers comprising postzygotic as well as precopulatory mechanisms prevent gene exchange between these species. We have studied genetic polymorphism in two populations of G. centralis and four of G. griseoflavus by means of gel electrophoresis of enzymes and other proteins giving information on a total of 30 loci. Values of interspecific genetic identity were similar to those obtained for conspecific populations, suggesting that fixation of Robertsonian fusions would have occurred without significant bottlenecks. It would also indicate that the cladogenetic process must be relatively recent. FIS values showed no evidence of inbreeding. Fixation indices (FST) for the ancestral species showed a tendency to form demes with very low gene flow among them, while in the derived species such tendency was not shown. However, because of the characteristics of the region they occupy, populations are of moderate size, and genic flow is low. Lack of correlation between gene flow levels and geographical distance between population pairs would indicate a recent and fast colonization of its distribution areas by the derived species. It is possible that fixation of Robertsonian fusions occurred in a marginal deme of the ancestral species, e.g. in a parapatric geographical context.  相似文献   

10.
The Persian Jird, Meriones persicus, is distributed from Eastern Anatolia to Afghanistan and western Pakistan. Six subspecies were described based on skull features and coat colours, but the validity of these subspecies is uncertain, and no molecular work has ever been conducted on this species. Iran appears to be a key geographical region in which to revise the systematic and evolutionary history of this species, because five of the six subspecies are present in this country. To evaluate the phylogeographical history and taxonomy of this species in Iran, we used a combination of genetic (cytochrome b gene sequences of 70 specimens) and geometric morphometric (2D landmarks on the ventral side of skull of 258 specimens) analyses. We also used ecological niche modelling to make inferences about the evolutionary history of these lineages. Our molecular data highlight the existence of four genetic lineages, but they only partly correspond to the previously described subspecies. Our molecular and morphometric data confirm the validity of M. p. rossicus and show that it has a wider geographical range than previously thought. M. p. gurganensis and M. p. baptistae are genetically very close. The skull of M. p. gurganensis is morphologically distinguishable from other subspecies. The subspecies M. p. persicus and M. p. baptistae are genetically distinct, but morphologically close. Meriones p. ambrosius is genetically close to M. p. persicus, and additional analyses with more specimens are needed to validate its subspecific status. The genetic structure observed in Iran seems to fit the topography and biogeography of the country and emphasize the role of the Abarkooh, Central and Lut deserts as barriers to gene flow. All intraspecific divergent events within the Persian Jird occurred during the last 1.4 My, suggesting that climatic changes probably trigger diversification within this species. Our genetic and species niche modelling results suggest that potential refugial areas persisted during glacial periods for this species in north‐western Zagros Mountains, north‐eastern Alborz Mountains and Kohrud Mountains.  相似文献   

11.
Phenetic relationships among four Apodemus species (A. agrarius, A. epimelas, A. flavicollis and A. sylvaticus) inferred from skull (mandible and cranium) variation were explored using landmark-based geometric morphometrics. Analysis of size variation revealed that mandibles and crania of A. epimelas were the largest, followed by those of A. flavicollis, while A. agrarius and A. sylvaticus had the smallest ones. Phenetic relationships inferred from mandible shape variation better reflected phylogenetic relationships among the analyzed Apodemus species than those inferred from cranial differences. Concerning cranial shape variation, the most differentiated species was A. epimelas, whose ecology clearly differs from the other three species. Thus, differentiation of the mandible provided a pattern fully concordant with the phylogeny, while the cranium differentiation was in agreement with ecology expectations. The most evident shape changes of mandible and cranium involved the angular process and facial region, respectively. We also found that allometry had a significant influence on shape variation and that size-dependent shape variation differed among the analyzed species. Moreover, mandible and cranium are differently influenced by allometric changes. Different phenetic relationships inferred from mandible and cranium shape variation imply that phylogeny, ecology, together with factors related to size differences are all involved in the observed morphological divergence among the analyzed Apodemus species.  相似文献   

12.
The geographic distribution of the populations of a species are influenced by the spatial structure of the ecosystems, the environmental factors and the presence of geographic barriers. The Neotropical otter, Lontra longicaudis, is widely distributed throughout the Americas, where a wide range of environmental conditions and geographical features could promote genetic and morphological variation on the three currently recognized subspecies. In this study, we combined phylogeographic, morphometric and environmental niche modelling analyses to examine whether: (1) genetic variation is associated with the presence of barriers to gene flow and/or hydrography; (2) genetic and morphologic variation are associated with environmental variation; and (3) the observed variation in L. longicaudis populations corresponds to the previously defined subspecies. We found strong phylogeographic structure between the northern (L. l. annectens) and the two-southern subspecies (L. l. longicaudis and L. l. enudris), and although shallower, we also detected genetic differentiation between the two South American subspecies. Such genetic differentiation corresponds to the hydrography and to the geographical barriers characteristic of the distributional area of the species. We found a correlation between the shape of the skull and mandible with the environmental variation through the distribution of the species, and we rejected the hypothesis of niche equivalency and similarity between the three identified genetic lineages, suggesting adaptations to different environmental conditions. Our results support that the variation in environmental conditions, in concert with geographical barriers to gene flow and hydrography, have led to population divergence of L. longicaudis along the Neotropics. These results have important taxonomic implications for the species and its conservation.  相似文献   

13.
Hoarding food is an important strategy of rodents in desert environments characterized by unpredictable and poor food resource availability. In the Monte Desert, Prosopis produces abundant food, unevenly in time and space, in the form of pods and seeds. Sigmodontine rodents (Graomys griseoflavus, Akodon molinae, Eligmodontia typus and Calomys musculinus) use Prosopis propagules extensively, and they could be predators or dispersers depending on how they handle and where they leave the propagules. The objectives of this study were: (1) to know what rodent species transported propagules; (2) to evaluate what hoarding pattern was used by species that transport propagules (larder and scatterhoarding); and (3) to analyse in which condition were propagules left by the rodent species, both at the food source and in caches. Our results showed that all four species transported propagules, with G. griseoflavus and E. typus being the species that carried more seeds. Our study supported the evidence that food caching is common among species and that many species both larderhoard and scatterhoard food. Graomys griseoflavus and A. molinae, the largest species, larderhoarded more than did the smaller E. typus. These results uphold the hypothesis that larger species will show greater propensity to larderhoard than smaller species. Considering the interaction between seed‐hoarding patterns and plants, E. typus was the species that could most improve germination because it scatterhoarded propagules and left seeds out of pods. In contrast, G. griseoflavus could have a negative impact on plant populations because this was the species that predated more seeds and larderhoarded a high percentage of them. The smallest C. musculinus was the species that transported propagules least, and left them as seeds inside pods or pod segments mainly at the food source, which makes seeds more vulnerable to predation.  相似文献   

14.
Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology—some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on differentiation related to biotic niche axes.  相似文献   

15.
The factors responsible for the patterns of niche differentiation and narrow endemism have rarely been investigated in annual Mediterranean plants. This topic was addressed here by performing comparative studies on realized niches, regional occupancy, global biogeographical distribution and seed traits of a set of Arenaria (Caryophyllaceae) species inhabiting southern Provence (SE France), focusing in particular on Arenaria provincialis, a narrow endemic restricted to the hills and modest calcareous mountains around the city of Marseille. Field studies were carried out from 2008 to 2009 at 624 sites in the limestone mountains where Arenaria species are likely to occur. The Arenaria species occurring in southern Provence vary greatly in their patterns of regional occupancy and their biogeographical distribution. Multivariate analysis of the realized niche showed that they have some similar limiting environmental factors in common, but they do not all occupy the same habitats. Studies on the fruits and seeds showed that the endemic A. provincialis has a larger seed than its congeners and a capsule that remains closed and falls from the plant at maturity. This well-differentiated diaspore specific to A. provincialis may be responsible for the limited dispersal capacity of this species. Phylogenetic analyses showed that A. provincialis is not closely related to the other taxa inhabiting southern Provence, but rather to Arenaria occurring in highland areas in the south of France. The restricted pattern of distribution of A. provincialis is probably due to the past isolation event from which it originated and to its limited dispersal capacity, rather than resulting from its ecological niche range.  相似文献   

16.
A morphometric analysis of the body shape of three species of horseshoe crabs was undertaken in order to infer the importance of natural and sexual selection. It was expected that natural selection would be most intense, leading to highest regional differentiation, in the American species Limulus polyphemus, which has the largest climatic differences between different populations. Local adaptation driven by sexual selection was expected in males but not females because horseshoe crab mating behaviour leads to competition between males, but not between females. Three hundred fifty-nine horseshoe crabs from nine populations, representing three species, were analyzed using a digitizer to position sixty morphometric landmarks in a three-dimensional space. Discriminant analysis revealed strong regional structuring within a species, which suggests strong philopatry, and showed the existence of geographically-based intraspecific variation. An admixture analysis showed regional intraspecific differentiation for males and females of L. polyphemus and males of the Asian horseshoe crab Carcinoscorpius rotundicauda, but not for females of C. rotundicauda and another Asian horseshoe crab, Tachypleus gigas. Differences in shape variation between sexes were tested with F-tests, which showed lower intrapopulation morphometric variation in males than females. These results indicate a lower degree of local adaptation on body shape in C. rotundicauda and T. gigas than in L. polyphemus and a lower degree of local adaptation in females than in males.  相似文献   

17.
Theoretical models of species coexistence between desert mammals have generally been based on a combination of food and microhabitat selection by granivorous rodents. Although these models are applicable in various deserts of the world, they cannot explain resource use by mammals in Neotropical deserts. The present study examines diet composition in a mammal assemblage in the Monte desert, Argentina. The results show that two main strategies are used by these mammals: medium‐sized species (hystricognath rodents: Dolichotis patagonum, Lagostomus maximus, Microcavia australis and Galea musteloides; and an exotic lagomorph: Lepus europaeus) are herbivores, whereas small‐sized species (a marsupial: Thylamys pusillus; and sigmodontine rodents: Graomys griseoflavus, Akodon molinae, Calomys musculinus, Eligmodontia typus) are omnivorous. Small mammals also show a tendency towards granivory (C. musculinus), insectivory (A. molinae and T. pusillus) and folivory (G. griseoflavus).  相似文献   

18.
Graomys griseoflavus is a South American phyllotine rodent having a remarkable Robertsonian polymorphism which may have produced reproductive isolation between 2n=42–41 and 2n=38–34 karyomorphs. Analysis of nucleolar organizer region (NOR) locations both by silver staining (Ag-NOR) and in situ hybridization revealed that 2n=42 individuals exhibit highly variable Ag-NOR patterns, while specimens of the 2n=38–34 karyomorphic group showed a single Ag-NOR pattern. The latter animals underwent two NOR deletions in reference to the 2n=42 karyomorphs, one of which would be the consequence of a Robertsonian fusion and the other would be produced by the unequal crossing-over mechanism. The differential NOR homogenization supports the hypothesis that G. griseoflavus karyomorphs are evolving separately towards the acquisition of separate species status.  相似文献   

19.
Identifying morphologically similar triatomine species is key to Chagas' disease vector control and surveillance, but remains challenging when only qualitative phenotypic data are available. We investigated whether morphometric and ecological variation can provide additional criteria for species delimitation by combining geometric morphometrics and ecological niche modelling to characterize two near-sibling triatomine species, Triatoma sordida and Triatoma garciabesi (Reduviidae: Triatominae). We analysed size and shape variation in 231 wings and 123 heads from one T. garciabesi and three T. sordida populations. Predicted distribution maps (21 climatic variables, 324 vector occurrence points) were produced using the Maxent method. Multivariate analyses summarized morphological and ecological variation. Wings and heads of T. sordida were significantly larger and more elongated than those of T. garciabesi. Discriminant analyses separated the species, with a partial overlap between Argentinean populations. The predicted distribution of T. garciabesi included northwest Argentina (mainly arid Chaco), whereas that of T. sordida included northeast Argentina (humid Chaco) and the Brazilian Cerrado and Caatinga ecoregions. Clear ecological niche differences were observed, with T. garciabesi occupying colder and drier areas than T. sordida. Our results show how morphometric variation and niche divergence can be used to enhance operational criteria for the delimitation of phenotypically similar triatomine species.  相似文献   

20.
Divergence of ecological niches in phylogenetically closely related species indicates the importance of ecology in speciation, especially for sympatric species are considered. Such ecological diversification provides an advantage of alleviating interspecies competition and promotes more efficient exploitation of environmental resources, thus being a basis for ecological speciation. We analyzed a group of closely related species from the subgenus Neritrema (genus Littorina, Caenogastropoda) from the gravel‐bouldery shores. In two distant sites at the Barents and Norwegian Sea, we examined the patterns of snail distribution during low tide (quantitative sampling stratified by intertidal level, presence of macrophytes, macrophyte species, and position on them), shell shape and its variability (geometric morphometrics), and metabolic characteristics (metabolomic profiling). The studied species diversified microbiotopes, which imply an important role of ecological specification in the recent evolution of this group. The only exception to this trend was the species pair L. arcana / L. saxatilis, which is specifically discussed. The ecological divergence was accompanied by differences in shell shape and metabolomic characteristics. Significant differences were found between L. obtusata versus L. fabalis and L. saxatilis / L. arcana versus L. compressa both in shell morphology and in metabolomes. L. saxatilis demonstrated a clear variability depending on intertidal level which corresponds to a shift in conditions within the occupied microhabitat. Interestingly, the differences between L. arcana (inhabiting the upper intertidal level) and L. compressa (inhabiting the lower one) were analogous to those between the upper and lower fractions of L. saxatilis. No significant level‐dependent changes were found between the upper and lower fractions of L. obtusata, most probably due to habitat amelioration by fucoid macroalgae. All these results are discussed in the contexts of the role of ecology in speciation, ecological niche dynamics and conservatism, and evolutionary history of the Neritrema species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号