首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Epigenetic aberrations are increasingly regarded as key factors in cancer progression. Recently, deregulation of histone acetyltransferases (HATs) has been linked to several types of cancer. Monocytic leukemia zinc finger protein (MOZ) is a member of the MYST family of HATs, which regulate gene expression in cell proliferation and differentiation. Deregulation of these processes through constitutively active MOZ fusion proteins gives rise to the formation of leukemic stem cells, rendering MOZ an excellent target for treating myeloid leukemia. The authors implemented a hit discovery campaign to identify small-molecule inhibitors of MOZ-HAT activity. They developed a robust, homogeneous assay measuring the acetylation of synthetic histone peptides. In a primary screening campaign testing 243 000 lead-like compounds, they identified inhibitors from several chemical classes. Secondary assays were used to eliminate assay-interfering compounds and prioritize confirmed hits. This study establishes a new high-throughput assay for HAT activity and could provide the foundation for the development of a new class of drugs for the treatment of leukemias.  相似文献   

2.
Esa1 (essential Sas2-related acetyltransferase 1) and Tip60 (HIV-1 TAT-interactive protein, 60 kDa) are key members of the MYST family of histone acetyltransferases (HATs) and play important functions in many cellular processes. In this work, we designed, synthesized and evaluated a series of substrate-based analogs for the inhibition of Esa1 and Tip60. The structures of these analogs feature that coenzyme A is covalently linked to the side chain amino group of the acetyl lysine residues in the histone peptide substrates. These bisubstrate analogs exhibit stronger potency in the inhibition of Esa1 and Tip60 compared to the small molecules curcumin and anacardic acid. In particular, H4K16CoA was tested as one of the most potent inhibitors for both Esa1 and Tip60. These substrate-based analog inhibitors will be useful mechanistic tools for analyzing biochemical mechanisms of Esa1 and Tip60, defining their functional roles in particular biological pathways, and facilitating protein crystallization and structural determination.  相似文献   

3.
Yang C  Wu J  Zheng YG 《PloS one》2012,7(3):e32886
The 60-kDa HIV-Tat interactive protein (Tip60) is a key member of the MYST family of histone acetyltransferases (HATs) that plays critical roles in multiple cellular processes. We report here that Tip60 undergoes autoacetylation at several lysine residues, including a key lysine residue (i.e. Lys-327) in the active site of the MYST domain. The mutation of K327 to arginine led to loss of both the autoacetylation activity and the cognate HAT activity. Interestingly, deacetylated Tip60 still kept a substantial degree of HAT activity. We also investigated the effect of cysteine 369 and glutamate 403 in Tip60 autoacetylation in order to understand the molecular pathway of the autoacetylation at K327. Together, we conclude that the acetylation of K327 which is located in the active site of Tip60 regulates but is not obligatory for the catalytic activity of Tip60. Since acetylation at this key residue appears to be evolutionarily conserved amongst all MYST proteins, our findings provide an interesting insight into the regulatory mechanism of MYST activities.  相似文献   

4.
Tat-interactive protein 60 (Tip60) is a member of the MYST family of histone acetyltransferases (HATs). In addition to its HAT domain, Tip contains a heterochromatin-associated protein 1-like chromodomain and a zinc finger-like domain. Several alternative splice variants of Tip60 have been characterized, including full-length Tip60alpha, Tip60beta (which lacks exon V encoded by the Tip60 gene), and Tip55 (which encodes a novel 103-amino-acid C terminus). We report here that isoproteins recognized by a pan-Tip60 antibody are strongly and transiently expressed between embryonic days 8 and 11 in the embryonic mouse myocardium. A functional role for Tip60 isoproteins in cardiac myocyte differentiation is suggested by immunoprecipitation experiments showing that Tip60alpha, Tip60beta, and Tip55 can bind serum response factor (SRF) and by transient transfection assessments showing that Tip60 and SRF cooperatively activate the atrial natriuretic factor promoter. Although this combinatorial activity is inhibited by histone deacetylase 7, it was unexpectedly enhanced by point mutation of the HAT domain. Ablation of the chromodomain from Tip60beta caused derepression. These findings suggest that Tip60 modulates expression of SRF-dependent cardiac genes.  相似文献   

5.
6.
We present a combination of database screening, synthesis and in vitro testing to identify novel histone acetyltransferase (HAT) inhibitors. The National Cancer Institute compound collection (NCI) and several commercial databases were filtered by similarity-based virtual screening to find new HAT inhibitors. Employing the recombinant HAT p300/CBP-associated factor (PCAF) and two different histone substrates for screening, pyridoisothiazolones were identified as inhibitors of human PCAF. Due to the limited solubility of the initial hits, we synthesized and tested them on PCAF. The compounds inhibit the proliferation of cancer cells. In summary, valuable chemical tools and potential lead candidates for new anticancer agents directed against HATs as new targets have been identified.  相似文献   

7.
We have identified new lead candidates that possess inhibitory activity against Mycobacterium tuberculosis H37Rv chorismate mutase by a ligand-based virtual screening optimized for lead evaluation in combination with in vitro enzymatic assay. The initial virtual screening using a ligand-based pharmacophore model identified 95 compounds from an in-house small molecule database of 15,452 compounds. The obtained hits were further evaluated by molecular docking and 15 compounds were short listed based on docking scores and the other scoring functions and subjected to biological assay. Chorismate mutase activity assays identified four compounds as inhibitors of M. tuberculosis chorismate mutase (MtCM) with low K(i) values. The structural models for these ligands in the chorismate mutase binding site will facilitate medicinal chemistry efforts for lead optimization against this protein.  相似文献   

8.
9.
组蛋白乙酰化是表观遗传修饰的重要方式,主要受到组蛋白乙酰转移酶(histone acetyltransferases, HATs)和组蛋白去乙酰化酶(histone deacetylase, HDACs)催化. MYST是人类HATs的4大家族之一,包括MOF(males absent on the first),TIP60 (tat interacting protein 60 kD),结合ORC1的组蛋白乙酰转移酶(histone acetyltransferase binding to ORC1, HBO1),单核细胞白血病锌指蛋白(monocytic leukemia zinc finger protein, MOZ)和MOZ相关蛋白(MOZ related factor, MORF)等,均具有典型的MYST结构域.MYST介导的乙酰化是重要的翻译后修饰,其催化底物包括组蛋白和非组蛋白,如组蛋白H3, H4, H2A, H2A突变体,以及许多参与DNA代谢、细胞增殖和发育调控的蛋白因子. MYST蛋白家族参与许多细胞的生理过程,本文主要综述其在调节基因转录、DNA损伤修复和肿瘤发生发展等方面的生物学功能.  相似文献   

10.
Strategies for developing protein tyrosine phosphatase inhibitors   总被引:1,自引:0,他引:1  
Protein tyrosine phosphatases (PTPs) play vital roles in numerous cellular processes and are implicated in a growing number of human diseases, ranging from cancer to cardiovascular, immunological, infectious, neurological, and metabolic diseases. Here we present methods for developing small molecule inhibitors for these enzymes, starting with how to set up a high throughput chemical library screening for PTP inhibitors, how to confirm and prioritize hits, and how to circumnavigate possible pitfalls. Next, we present the relatively new hit generating method of in silico or virtual screening. We give an overview of existing software tools, describe how to choose and generate protein target structures and illustrate the procedure with examples. We then discuss how three-dimensional PTP structures can be analyzed in terms of their potential to bind small molecule inhibitors selectively over homologous proteins and how computer tools can be applied for lead optimization efforts. We finish with a perspective of how well these PTP inhibitors might perform as future drugs to treat human disease.  相似文献   

11.
We have used a combination of virtual screening (VS) and high-throughput screening (HTS) techniques to identify novel, non-peptidic small molecule inhibitors against human SARS-CoV 3CLpro. A structure-based VS approach integrating docking and pharmacophore based methods was employed to computationally screen 621,000 compounds from the ZINC library. The screening protocol was validated using known 3CLpro inhibitors and was optimized for speed, improved selectivity, and for accommodating receptor flexibility. Subsequently, a fluorescence-based enzymatic HTS assay was developed and optimized to experimentally screen approximately 41,000 compounds from four structurally diverse libraries chosen mainly based on the VS results. False positives from initial HTS hits were eliminated by a secondary orthogonal binding analysis using surface plasmon resonance (SPR). The campaign identified a reversible small molecule inhibitor exhibiting mixed-type inhibition with a Ki value of 11.1 μM. Together, these results validate our protocols as suitable approaches to screen virtual and chemical libraries, and the newly identified compound reported in our study represents a promising structural scaffold to pursue for further SARS-CoV 3CLpro inhibitor development.  相似文献   

12.
13.
The MYST family of histone acetyltransferases (HATs) plays critical roles in diverse cellular processes, such as the epigenetic regulation of gene expression. Lysine autoacetylation of the MYST HATs has recently received considerable attention. Nonetheless, the mechanism and function of the autoacetylation process are not well defined. To better understand the biochemical mechanism of MYST autoacetylation and the impact of autoacetylation on the cognate histone acetylation, we carried out detailed analyses of males-absent-on-the-first (MOF), a key member of the MYST family. A number of mutant MOF proteins were produced with point mutations at several key residues near the active site of the enzyme. Autoradiography and immunoblotting data showed that mutation of these residues affects the autoacetylation activity and HAT activity of MOF by various degrees demonstrating that MOF activity is highly sensitive to the chemical changes in those residues. We produced MOF protein in the deacetylated form by using a nonspecific lysine deacetylase. Interestingly, both the autoacetylation activity and the histone acetylation activity of the deacetylated MOF were found to be very close to that of wild-type MOF, suggesting that autoacetylation of MOF only marginally modulates the enzymatic activity. Also, we found that the autoacetylation rates of MOF and deacetylated MOF were much slower than the cognate substrate acetylation. Thus, autoacetylation does not seem to contribute to the intrinsic enzymatic activity in a significant manner. These data provide new insights into the mechanism and function of MYST HAT autoacetylation.  相似文献   

14.
15.
乙酰基转移酶Tip60(KAT5)的功能研究进展   总被引:1,自引:0,他引:1  
Tip60(KAT5)属于MYST乙酰基转移酶家族,同时它也是进化上非常保守的Nu A4蛋白质复合体的重要成员.过去十几年的研究证实,Tip60一方面可以作为转录调控因子结合核受体(如雄激素受体,AR)或c-MYC、AICD/Fe65、NCo R、E2F等转录因子来激活或抑制下游基因的表达,另一方面,KAT5可以乙酰化一系列蛋白来调控这些蛋白质的活性及稳定性,进而调控DNA损伤修复反应、细胞周期进程、细胞周期检查点的激活、凋亡、代谢及自噬等重要细胞功能.此外,Tip60在肿瘤的发生发展及转移、胚胎发育等过程中也发挥着至关重要的作用.本文将主要对Tip60近几年的研究进展做一个综述.  相似文献   

16.
17.
18.
HATs (histone acetyltransferases) contribute to the regulation of gene expression, and loss or dysregulation of these activities may link to tumorigenesis. Here, we demonstrate that expression levels of HATs, p300 and CBP [CREB (cAMP-response-element-binding protein)-binding protein] were decreased during chemical hepatocarcinogenesis, whereas expression of MOZ (monocytic leukaemia zinc-finger protein; MYST3)--a member of the MYST [MOZ, Ybf2/Sas3, Sas2 and TIP60 (Tat-interacting protein, 60 kDa)] acetyltransferase family--was induced. Although the MOZ gene frequently is rearranged in leukaemia, we were unable to detect MOZ rearrangement in livers with hyperplastic nodules. We examined the effect of MOZ on hepatocarcinogenic-specific gene expression. GSTP (glutathione S-transferase placental form) is a Phase II detoxification enzyme and a well-known tumour marker that is specifically elevated during hepatocarcinogenesis. GSTP gene activation is regulated mainly by the GPE1 (GSTP enhancer 1) enhancer element, which is recognized by the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2)-MafK heterodimer. We found that MOZ enhances GSTP promoter activity through GPE1 and acts as a co-activator of the Nrf2-MafK heterodimer. Further, exogenous MOZ induced GSTP expression in rat hepatoma H4IIE cells. These results suggest that during early hepatocarcinogenesis, aberrantly expressed MOZ may induce GSTP expression through the Nrf2-mediated pathway.  相似文献   

19.
20.
The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号