首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apterous is a LIM-homeodomain protein that confers dorsal compartment identity in Drosophila wing development. Apterous activity requires formation of a complex with a co-factor, Chip/dLDB. Apterous activity is regulated during wing development by dLMO, which competes with Apterous for complex formation. Here, we present evidence that complex formation between Apterous, Chip and DNA stabilizes Apterous protein in vivo. We also report that a difference in the ability of Chip to bind the LIM domains of Apterous and dLMO contributes to regulation of activity levels in vivo.  相似文献   

2.
The establishment of the dorsal-ventral axis of the Drosophila wing depends on the activity of the LIM-homeodomain protein Apterous. Apterous activity depends on the formation of a higher order complex with its cofactor Chip to induce the expression of its target genes. Apterous activity levels are modulated during development by dLMO. Expression of dLMO in the Drosophila wing is regulated by two distinct Chip dependent mechanisms. Early in development, Chip bridges two molecules of Apterous to induce expression of dLMO in the dorsal compartment. Later in development, Chip, independently of Apterous, is required for expression of dLMO in the wing pouch. We have conducted a modular P-element based EP (enhancer/promoter) misexpression screen to look for genes involved in Apterous activity. We have found Osa, a member of the Brahma chromatin-remodeling complex, as a positive modulator of Apterous activity in the Drosophila wing. Osa mediates activation of some Apterous target genes and repression of others, including dLMO. Osa has been shown to bind Chip. We propose that Chip recruits Osa to the Apterous target genes, thus mediating activation or repression of their expression.  相似文献   

3.
4.
Dorso-ventral axis formation in the Drosophila wing requires the localized accumulation of the Apterous LIM/homeodomain protein (Ap) in dorsal cells. Here we report that dLdb/Chip encodes a LIM-binding cofactor that controls Ap activity. Both lack and excess of dLdb/Chip function cause the same phenotype as apterous (ap) lack of function; i.e. dorsal to ventral transformations, generation of new wing margins, and wing outgrowths. These results indicate that the normal function of Ap in dorso-ventral compartmentalization requires the correct amount of the DLDB/CHIP co-factor, and suggest that the Ap and DLDB/CHIP proteins form a multimeric functional complex. In support of this model, we show that the dLdb/Chip excess-of-function phenotypes can be rescued by ap overexpression.  相似文献   

5.
Dorsoventral axis formation in the Drosophila wing depends on the activity of the selector gene apterous. Although selector genes are usually thought of as binary developmental switches, we find that Apterous activity is negatively regulated during wing development by its target gene dLMO. Apterous-dependent expression of Serrate and fringe in dorsal cells leads to the restricted activation of Notch along the dorsoventral compartment boundary. We present evidence that the ability of cells to participate in this Apterous-dependent cell-interaction is under spatial and temporal control. Apterous-dependent expression of dLMO causes downregulation of Serrate and fringe and allows expression of delta in dorsal cells. This limits the time window during which dorsoventral cell interactions can lead to localized activation of Notch and induction of the dorsoventral organizer. Overactivation of Apterous in the absence of dLMO leads to overexpression of Serrate, reduced expression of delta and concomitant defects in differentiation and cell survival in the wing primordium. Thus, downregulation of Apterous activity is needed to allow normal wing development.  相似文献   

6.
7.
The GATA factor Pannier activates the achaete-scute (ASC) proneural complex through enhancer binding and provides positional information for sensory bristle patterning in Drosophila. Chip was previously identified as a cofactor of the dorsal selector Apterous, and we show here that both Apterous and Chip also regulate ASC expression. Chip cooperates with Pannier in bridging the GATA factor with the HLH Ac/Sc and Daughterless proteins to allow enhancer-promoter interactions, leading to activation of the proneural genes, whereas Apterous antagonizes Pannier function. Within the Pannier domain of expression, Pannier and Apterous may compete for binding to their common Chip cofactor, and the accurate stoichiometry between these three proteins is essential for both proneural prepattern and compartmentalization of the thorax.  相似文献   

8.
9.
10.
The LIM homeodomain (LIM-HD) protein Apterous (Ap) and its cofactor DLDB/CHIP control dorso- ventral (D/V) patterning and growth of Drosophila wing. To investigate the molecular mechanisms of Ap/CHIP function we altered their relative levels of expression and generated mutants in the LIM1, LIM2 and HD domains of Ap, as well as in the LIM-interacting and self-association domains of CHIP. Using in vitro and in vivo assays we found that: (i) the levels of CHIP relative to Ap control D/V patterning; (ii) the LIM1 and LIM2 domains differ in their contributions to Ap function; (iii) Ap HD mutations cause weak dominant negative effects; (iv) overexpression of ChipDeltaSAD mutants mimics Ap lack-of-function, and this dominant negative phenotype is caused by titration of Ap because it can be rescued by adding extra Ap; and (v) overexpression of ChipDeltaLID mutants also causes an Ap lack-of-function phenotype, but it cannot be rescued by extra Ap. These results support the model that the Ap-CHIP active complex in vivo is a tetramer.  相似文献   

11.
12.
赵伟东  陈誉华 《生命科学》2002,14(1):43-46,52
近来,几组研究人员分别独立地分离出一种新的蛋白质,先后将其命名为LDB、NLI和CLIM,统称为LIM域结合蛋白,它在爪蟾和小鼠的胚胎以及成体小鼠和人中有着广泛的表达,并能与多种LIM同源域蛋白发生相互作用,进而在神经系统发育及红细胞和淋巴细胞的成熟过程中发挥作用,LIM域结合蛋白在果蝇中的同源性CHIP/dLDB的发现,为进一步研究LIM同源域蛋白提供了有价值的线索。  相似文献   

13.
14.
15.
16.
Kania A  Jessell TM 《Neuron》2003,38(4):581-596
The formation of topographic neural maps relies on the coordinate assignment of neuronal cell body position and axonal trajectory. The projection of motor neurons of the lateral motor column (LMC) along the dorsoventral axis of the limb mesenchyme constitutes a simple topographic map that is organized in a binary manner. We show that LIM homeodomain proteins establish motor neuron topography by coordinating the mediolateral settling position of motor neurons within the LMC with the dorsoventral selection of axon pathways in the limb. These topographic projections are established, in part, through LIM homeodomain protein control of EphA receptors and ephrin-A ligands in motor neurons and limb mesenchymal cells.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号