共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Burdet C Vuillerme N Rougier PR 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(10):2911-2918
The proprioceptive cues in the control of movement is recognized as playing a major role in postural control. However, little is known about its possible increased contribution to postural control consecutive to repetitive muscular activations. To test this, the short-term effects induced by a 1-legged exercise on 2-legged postural control with the eyes closed were assessed in healthy subjects. The center-of-pressure (CP) displacements obtained using a force platform were split into 2 elementary movements: center-of-gravity vertical projection (CGv) and the difference (CP - CGv). These movements assessed the net postural performance and the level of neuromuscular activity, respectively, and were processed afterward (a) through variances, mean velocity, and the average surface covered by the trajectories and (b) a fractional Brownian motion (fBm) modeling. The latter provides further information about how much the subject controls the movements and the spatiotemporal relation between the successive control mechanisms. No difference was found using the classical parameters. In contrast, fBm parameters showed statistically significant changes in postural control after 1-legged exercises: The spatial and temporal coordinates of the transition points for the CG movements along the anteroposterior axis are decreased. Because the body movement control does not rely on visual or vestibular cues, this ability to trigger the corrective process of the CG movements more quickly in the postexercise condition and once a more reduced distance has been covered emphasizes how prior muscular activation improves body movement detection. As a general rule, these data show that the motor systems control body motions better after repetitive stimulation of the sensory cues. These insights should be of interest in physical activities based on a precise muscular length control. 相似文献
3.
Sweating responses were examined in five horses during a standardized exercise test (SET) in hot conditions (32-34 degrees C, 45-55% relative humidity) during 8 wk of exercise training (5 days/wk) in moderate conditions (19-21 degrees C, 45-55% relative humidity). SETs consisting of 7 km at 50% maximal O(2) consumption, determined 1 wk before training day (TD) 0, were completed on a treadmill set at a 6 degrees incline on TD0, 14, 28, 42, and 56. Mean maximal O(2) consumption, measured 2 days before each SET, increased 19% [TD0 to 42: 135 +/- 5 (SE) to 161 +/- 4 ml. kg(-1). min(-1)]. Peak sweating rate (SR) during exercise increased on TD14, 28, 42, and 56 compared with TD0, whereas SRs and sweat losses in recovery decreased by TD28. By TD56, end-exercise rectal and pulmonary artery temperature decreased by 0.9 +/- 0.1 and 1.2 +/- 0.1 degrees C, respectively, and mean change in body mass during the SET decreased by 23% (TD0: 10.1 +/- 0.9; TD56: 7.7 +/- 0.3 kg). Sweat Na(+) concentration during exercise decreased, whereas sweat K(+) concentration increased, and values for Cl(-) concentration in sweat were unchanged. Moderate-intensity training in cool conditions resulted in a 1.6-fold increase in sweating sensitivity evident by 4 wk and a 0.7 +/- 0.1 degrees C decrease in sweating threshold after 8 wk during exercise in hot, dry conditions. Altered sweating responses contributed to improved heat dissipation during exercise and a lower end-exercise core temperature. Despite higher SRs for a given core temperature during exercise, decreases in recovery SRs result in an overall reduction in sweat fluid losses but no change in total sweat ion losses after training. 相似文献
4.
Fumio Yamazaki Ryoko Sone Nobuharu Fujii Haruo Ikegami 《International journal of biometeorology》1993,37(4):212-217
Based on the hypothesis that the relation between sweating rate and body temperature should be different during exercise and rest after exercise, we compared the sweating response during exercise and recovery at a similar body temperature. Healthy male subjects performed submaximal exercise (Experiment 1) and maximal exercise (Experiment 2) in a room at 27° C and 35% relative humidity. During exercise and recovery of 20 min after exercise, esophageal temperature (Tes), mean skin temperature, mean body temperature (
), chest sweating rate (
), and the frequency of sweat expulsion (F
SW) were measured. In both experiments,
andF
SW were clearly higher during exercise than recovery at a similar body temperature (Tes,
).
was similar during exercise and recovery, or a little less during the former, at a similarF
SW. It is concluded that the sweating rate during exercise is greater than that during recovery at the same body temperature, due to greater central sudomotor activity during exercise. The difference between the two values is thought to be related to non-thermal factors and the rate of change in mean skin temperature. 相似文献
5.
This study examined sweating responses in six exercise-trained horses during 21 consecutive days (4 h/day) of exposure to, and daily exercise in, hot humid conditions (32-34 degrees C, 80-85% relative humidity). On days 0, 3, 7, 14, and 21, horses completed a standardized exercise test on a treadmill (6 degrees incline) at a speed eliciting 50% of maximal O(2) uptake until a pulmonary artery temperature of 41.5 degrees C was attained. Sweat was collected at rest, every 5 min during exercise, and during 1 h of standing recovery for measurement of ion composition (Na(+), K(+), and Cl(-)) and sweating rate (SR). There was no change in the mean time to reach a pulmonary artery temperature of 41.5 degrees C (range 19.09 +/- 1.41 min on day 0 to 20.92 +/- 1.98 min on day 3). Peak SR during exercise (ml. m(-2). min(-1)) increased on day 7 (57.5 +/- 5. 0) but was not different on day 21 (48.0 +/- 4.7) compared with day 0 (52.0 +/- 3.4). Heat acclimation resulted in a 17% decline in SR during recovery and decreases in body mass and sweat fluid losses during the standardized exercise test of 25 and 22%, respectively, by day 21. By day 21, there was also a 10% decrease in mean sweat Na(+) concentration for a given SR during exercise and recovery; this contributed to an approximately 26% decrease in calculated total sweat ion losses (3,112 +/- 114 mmol on day 0 vs. 2,295 +/- 107 mmol on day 21). By day 21, there was a decrease in sweating threshold ( approximately 1 degrees C) but no change in sweat sensitivity. It is concluded that horses responded to 21 days of acclimation to, and exercise in, hot humid conditions with a reduction in sweat ion losses attributed to decreases in sweat Na(+) concentration and SR during recovery. 相似文献
6.
Body temperatures and sweating during exhaustive exercise 总被引:1,自引:0,他引:1
7.
Glen P Kenny Julien Periard W Shane Journeay Ronald J Sigal Francis D Reardon 《Journal of applied physiology》2003,95(6):2355-2360
The hypothesis that the magnitude of the postexercise onset threshold for sweating is increased by the intensity of exercise was tested in eight subjects. Esophageal temperature was monitored as an index of core temperature while sweat rate was measured by using a ventilated capsule placed on the upper back. Subjects remained seated resting for 15 min (no exercise) or performed 15 min of treadmill running at either 55, 70, or 85% of peak oxygen consumption (V(o2 peak)) followed by a 20-min seated recovery. Subjects then donned a liquid-conditioned suit used to regulate mean skin temperature. The suit was first perfused with 20 degrees C water to control and stabilize skin and core temperature before whole body heating. Subsequently, the skin was heated ( approximately 4.0 degrees C/h) until sweating occurred. Exercise resulted in an increase in the onset threshold for sweating of 0.11 +/- 0.02, 0.23 +/- 0.01, and 0.33 +/- 0.02 degrees C above that measured for the no-exercise resting values (P < 0.05) for the 55, 70, and 85% of V(o2 peak) exercise conditions, respectively. We did note that there was a greater postexercise hypotension as a function of exercise intensity as measured at the end of the 20-min exercise recovery. Thus it is plausible that the increase in postexercise threshold may be related to postexercise hypotension. It is concluded that the sweating response during upright recovery is significantly modified by exercise intensity and may likely be influenced by the nonthermal baroreceptor reflex adjustments postexercise. 相似文献
8.
N Kondo H Tominaga M Shibasaki K Aoki S Okada T Nishiyasu 《Journal of applied physiology》2000,88(5):1590-1596
To investigate how the sweating response to a sustained handgrip exercise depends on changes in the exercise intensity, the sweating response to exercise was measured in eight healthy male subjects. Each subject lay in the supine position in a climatic chamber (35 degrees C and 50% relative humidity) for approximately 60 min. This exposure caused sudomotor activation by increasing skin temperature without a marked change in internal temperature. After this period, each subject performed isometric handgrip exercise [15, 30, 45, and 60% maximal voluntary contraction (MVC)] for 60 s. Although esophageal and mean skin temperatures did not change with a rise in exercise intensity and were similar at all exercise intensities, the sweating rate (SR) on the forearm increased significantly (P < 0.05) from baseline (0.094 +/- 0.021 mg. cm(-2). min(-1) at 30% MVC, 0.102 +/- 0.022 mg. cm(-2). min(-1) at 45% MVC, 0.059 +/- 0.009 mg. cm(-2). min(-1) at 60% MVC) in parallel with exercise intensity above exercise intensity at 30% MVC (0.121 +/- 0.023 mg. cm(-2). min(-1) at 30% MVC, 0.242 +/- 0.051 mg. cm(-2). min(-1) at 45% MVC, 0.290 +/- 0.056 mg. cm(-2). min(-1) at 60% MVC). Above 45% MVC, SR on the palm increased significantly from baseline (P < 0.05). Although SR on the forearm and palm tended to increase with a rise in exercise intensity, there was a difference in the time courses of SR between sites. SR on the palm showed a plateau after abrupt increase, whereas SR on the forearm increased progressively during exercise. These results suggest that the increase in SR with the increase in sustained handgrip exercise intensity is due to nonthermal factors and that the magnitude of these factors during the exercise may be responsible for the magnitude of SR. 相似文献
9.
Ten older (60-71 yr) and nine younger (20-25 yr) active healthy men were exposed to passive heating [by placing the lower legs and feet in a 43 degrees C water bath for 60 min while sitting in a warm (35 degrees C, 45% relative humidity) chamber] in summer and winter. The increase in rectal temperature (Tre) was significantly (P less than 0.05) greater, and mean skin temperature and forearm blood flow were lower, for the older men in both seasons. Total sweating rate was lower in the older men, but significantly (P less than 0.05) so only in the summer. The Tre threshold for sweating was unaffected by either age or site (back vs. thigh). The local sweating rate (msw) on the thigh was significantly lower (P less than 0.05) for the older men throughout the exposure, whereas there were no significant age-related differences for the average or peak values of back msw, although lesser sweating on the back occurred during the first 30 min of exposure. The decreased msw on the thigh was due to a lower sweat output per heat-activated sweat gland rather than from recruitment of fewer glands. It was concluded that regional differences exist in the age-related decrement in sweat gland function. Furthermore, these findings suggest that aging leads to a decreased ability to maintain body temperature with passive heating of the extremities, which may be attributed in part to decreased regional sweat gland function. 相似文献
10.
P J Neary H A Wenger 《European journal of applied physiology and occupational physiology》1986,54(6):591-595
The purpose of this investigation was to compare differences between one- and two-legged exercise on the lactate (LT) and ventilation (VT) threshold. On four separate occasions, eight male volunteer subjects (1-leg VO2max = 3.36 l X min-1; 2-leg VO2max = 4.27 l X min-1) performed 1- and 2-legged submaximal and maximal exercise. Submaximal threshold tests for 1- and 2-legs, began with a warm-up at 50 W and then increased every 3 minutes by 16 W and 50 W, respectively. Similar increments occurred every minute for the maximal tests. Venous blood samples were collected during the last 30 s of each work load, whereas noninvasive gas measures were calculated every 30 s. No differences in VO2 (l X min-1) were found between 1- and 2-legs at LT or VT, but significant differences (p less than 0.05) were recorded at a given power output. Lactate concentration ([LA]) was different (p less than 0.05) between 1- and 2-legs (2.52 vs. 1.97 mmol X l-1) at LT. This suggests it is VO2 rather than muscle mass which affects LT and VT. VO2max for 1-leg exercise was 79% of the 2-leg value. This implies the central circulation rather than the peripheral muscle is limiting to VO2max. 相似文献
11.
12.
Manabu Shibasaki Thad E Wilson Craig G Crandall 《Journal of applied physiology》2006,100(5):1692-1701
In humans, evaporative heat loss from eccrine sweat glands is critical for thermoregulation during exercise and/or exposure to hot environmental conditions, particularly when environmental temperature is greater than skin temperature. Since the time of the ancient Greeks, the significance of sweating has been recognized, whereas our understanding of the mechanisms and controllers of sweating has largely developed during the past century. This review initially focuses on the basic mechanisms of eccrine sweat secretion during heat stress and/or exercise along with a review of the primary controllers of thermoregulatory sweating (i.e., internal and skin temperatures). This is followed by a review of key nonthermal factors associated with prolonged heat stress and exercise that have been proposed to modulate the sweating response. Finally, mechanisms pertaining to the effects of heat acclimation and microgravity exposure are presented. 相似文献
13.
Importance of dynamics of sweating in men during exercise 总被引:3,自引:0,他引:3
Influence of dynamics of sweating on rectal temperature increase was tested in 3 groups of men performing cycle exercise with intensity of 65, 90 and 120 W, respectively, in 22 degrees C chamber temperature and 30% of relative air humidity. During exercise at 65 and 90 W the subjects wore suits while exercising with intensity of 120 W they wore only shorts. The dynamics of sweating was described by delay in onset of sweating and time constant of the reaction. Wearing caused significant increase in skin humidity and decreased evaporative rate of sweating. Sweat rate during steady state was related to the metabolic rate in naked (r = 0.89, p less than 0.002) as well as in wearing subjects (r = 0.93, p less than 0.01). Delay in onset of sweating was, in average, 5 min with a time constant of 7 min. Both factors showed a tendency to be shorter with increasing work intensity. Mean increase in rectal temperature was proportional to the intensity of exercise although the individual delta Tre correlated well with the dynamics of sweating in naked (r = 0.83, p less than 0.01) and wearing subjects (r = 0.84, p less than 0.01). Since delta Tre was smaller in subjects with shorter inertia time of sweating in response to beginning of exercise at the same intensity it is concluded that the dynamics of sweating can play an important role in limiting body temperature increase in working men. 相似文献
14.
15.
16.
Control of local and total sweating during exercise transients 总被引:8,自引:0,他引:8
17.
18.
This study was designed to determine the extent to which changes in the evaporative power of the environment (Emax) affect sweating and evaporative rates. Six male subjects undertook four 60-min bouts of cycle ergometer exercise at 56% maximal O2 uptake (VO2max).Emax was varied by differences in ambient temperature and airflow; two exercise bouts took place at 24 degrees C and two at 35 degrees C, with air velocity at < 0.2 and 3.0 m/s in both. Total sweat production was estimated from body weight loss, whereas whole body evaporative rate was measured continuously from a Potter beam balance. Body core temperature was measured continuously from a thermocouple in the esophagus (T(es)), with mean skin temperature (Tsk) computed each minute from thermocouples at eight sites. Total body sweat loss was significantly greater (P < 0.05) in the 0.2- than in the 3.0-m/s condition at both 24 and 35 degrees C. Tsk was higher (P < 0.05) in the still-air conditions at both temperatures, but final T(es) was significantly higher (P < 0.05) in still air only in the 35 degrees C environment. Thus the reduced Emax in still air caused a greater heat storage, thereby stimulating a greater total sweat loss. However, in part because of reduced skin wettedness, the slope of the sweat rate-to-T(es) relation at 35 degrees C in the 3.0-m/s condition was 118% that at 0.2 m/s (P < 0.005).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
J Timbal M Loncle J Durand-Bailloud C Boutelier 《Comptes rendus des séances de la Société de biologie et de ses filiales》1975,169(4):872-876
From a practical viewpoint, thermal sweating during exercise can be described by an exponential equation. The errors from this mathematical model are of few importance. Nevertheless, metrologic and physiological factors can complicate theoretically the model. 相似文献
20.
Kolka M. A.; Stephenson L. A.; Rock P. B.; Gonzalez R. R. 《Journal of applied physiology》1987,62(6):2224-2229
The effect of acute hypobaric hypoxia on local sweating and cutaneous blood flow was studied in four men and four women (follicular phase of menstrual cycle), who exercised at 60% of their altitude-specific peak aerobic power for 35 min at barometric pressures (PB) of 770 Torr (sea level), 552 Torr (2,596 m), and 428 Torr (4,575 m) at an ambient temperature of 30 degrees C. We measured esophageal temperature (Tes), mean skin temperature (Tsk, 8 sites), and local sweating (ms) from dew-point sensors attached to the skin at the chest, arm, and thigh. Skin blood flow (SkBF) of the forearm was measured once each minute by venous occlusion plethysmography. There were no gender differences in the sensitivity (slope) or the threshold of either ms/Tes or SkBF/Tes at any altitude. No change in the Tes for sweating onset occurred with altitude. The mean slopes of the ms/Tes relationships for the three regional sites decreased with increasing altitude, although these differences were not significant between the two lower PBS. The slope of SkBF/Tes was reduced in five of the eight subjects at 428 Torr. Enhanced body cooling as a response to the higher evaporative capacity of the environment is suggested as a component of these peripheral changes occurring in hypobaric hypoxia. 相似文献