首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the experiments involving incubation of the liver, brain cortex, muscle and adipose tissues homogenates with [3-14C] tryptophan for an hour 43.2-89.3% of the label was found in proteins, 7.2-47.2%--in lipids, 2.6-9.4%--in CO2. Following incubation of the above-mentioned tissue homogenates with [2-14C] alanine, proteins, lipids and CO2 contain 28.8-49.3%; 22.6-31.9% and 21.6-49.3% of radioactive label, respectively. Radioactivity of lipids synthesized by the homogenates of the investigated tissues from [3-14C] tryptophan and [2-14C] alanine is 23.5-63.5 and 21.1-56.0%, respectively, the radioactivity of CO2 being 1.4-5.1 and 9.3-11.8% of the above-mentioned compounds synthesized from [1-14C] acetate. The results obtained testify to the considerable contribution of [3-14C] tryptophan and [2-14C] alanine to protein synthesis as well as to their involvement in the substrate supply of lipogenesis and energetic processes in various organs and tissues of cattle.  相似文献   

2.
Metabolism of dehydroisoandrosterone-4-14C, 4beta-3H in man   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
6.
Metabolism of palmitaldehyde-1-14C in the rat brain   总被引:2,自引:0,他引:2  
  相似文献   

7.
Metabolism of arachidonic acid-1-14C in the rat   总被引:1,自引:0,他引:1  
  相似文献   

8.
Subcellular fractions from germinated barley embryos, chloroplast preparations and whole germinating barley grains are able to carry out the conversions ent-kaurenol → ent-kaurenal → ent-kaurenoic acid → ent-hydroxykaurenoic acid, the initial steps of the biosynthetic pathway to gibberellins. Whole grains, and chloroplasts to a slight extent, incorporate radioactivity from ent-kaurenol-[17-14C] and ent-kaurenoic acid-[17-14C] into materials with similar but distinct properties from the gibberellins GA1, GA3, GA4 and GA7.  相似文献   

9.
J G Sowell  A A Hagen  R C Troop 《Steroids》1971,18(3):289-301
The metabolism of cortisone-4-14C has been studied in male rat lung tissue preparations. Data indicate the presence of 11β-hydroxysteroid dehydrogenase, Δ4-5α-reductase, 3α-hydroxysteroid dehydrogenase and 20α-hydroxysteroid dehydrogenase activity in this tissue. Metabolites identified were hydrocortisone, 17α, 20α, 21-trihydroxy-4-pregnene-3, 11-dione and 3α, 17α, 21-trihydroxy-5α-pregnan-11,20-dione.  相似文献   

10.
11.
12.
13.
2-[14C]-cis, trans-xanthoxin (specific activity 0.26 µCi/µmol)has been synthesized from4-(1', 2'-epoxy-4'-hydroxy-2', 6',6'-trimethyl-l'-cyclohexyl)-trans-3-buten-2-oneand methyl 2-[14C]-bromoacetate. When 2-[14C]-cis, trans-xanthoxin was fed to cut shoots of tomatoand dwarf bean, it was converted within 8 h to (+)-abscisicacid in yields of 10.8 and 7.0 per cent respectively. Pea seedsand tomato fruits gave much smaller conversions. A second majormetabolic product extracted from treated tomato and bean shootswas shown to be a metabolite of abscisic acid and has been tentativelyidentified as phaseic acid. These results, together with the earlier finding that xanthoxinis present in the extracts of many seedlings, suggest that xanthophyllsand xanthoxin may be precursors in the biosynthesis of ( + )-abscisicacid  相似文献   

14.
Metabolism of phytol-U-14C and phytanic acid-U-14C in the rat   总被引:4,自引:0,他引:4  
The metabolism of uniformly-labeled (14)C-phytol, (14)C-phytenic acid, and (14)C-phytanic acid was studied in the rat. Conversion of both phytol and phytenic acid to phytanic acid was demonstrated. Tracer doses of phytol-U-(14)C given orally were well absorbed (30-66%), and approximately 30% of the absorbed dose was converted to (14)CO(2) in 18 hr. After intravenous injection, 20% appeared in (14)CO(2) in 4 hr. Phytanic acid-U-(14)C given intravenously was oxidized at a comparable rate (22-37% in 4 hr) and was as rapidly oxidized as palmitic acid-1-(14)C (21% in 4 hr). Metabolism of these substrates was also studied in rats previously maintained on a diet containing 5% phytol by weight, which causes accumulation of phytanic acid, phytenic acid, and, to a lesser extent, phytol in blood and tissues. Despite the large body pools of preformed, unlabeled substrate in these animals, the fraction of an administered dose of phytol-U-(14)C or phytanic acid-U-(14)C converted to (14)CO(2) was not significantly diminished. These studies indicate that the rat has an appreciable capacity to degrade the highly branched carbon skeleton of phytol and its derivatives. Twenty-four hours after administration of phytol-U-(14)C, the lipid radioactivity remaining in the body was widely distributed among the tissues, highest concentrations being found in liver and adipose tissue. Four hours after intravenous administration of phytanic acid-U-(14)C, all of the major lipid classes in the liver contained radioactivity, most in triglycerides and phospholipids and least in cholesterol esters and lower glycerides. There was no demonstrable incorporation of mevalonate-2-(14)C or acetate-1-(14)C into liver phytanic acid when they were given intravenously to a rat previously fed phytol. Endogenous biosynthesis, if it occurs at all, must be extremely limited.  相似文献   

15.
14C from indol-3-yl-(acetic acid-2-14C) (IAA-14C) was transportedin a weak but definitely polar manner through segments of youngand matured regions of pea roots. Greater quantities of 14C-labelledmaterial moved acropetally than basipetally. Up to 70 per centof radioactivity originally present in donor agar blocks wastaken up by the root segments, but only approximately 2 to 3per cent of this emerged into the receiver agar blocks. Anydifferences in uptake, transport, or binding of auxin were veryslight in the three regions of root studied. The IAA-14C wasmetabolized during passage through the root segments, yieldingtwo principal radioactive products. The identities of thesewere not determined, but they appeared to have auxin activityand may be formed spontaneously, but more slowly, in solutionsof IAA-14C. IAA-14C was transported into receiver blocks morereadily than its radioactive derivatives.  相似文献   

16.
17.
1. The metabolism of [1-(14)C]glyoxylate to carbon dioxide, glycine, oxalate, serine, formate and glycollate was investigated in hyperoxaluric and control subjects' kidney and liver tissue in vitro. 2. Only glycine and carbon dioxide became significantly labelled with (14)C, and this was less in the hyperoxaluric patients' kidney tissue than in the control tissue. 3. Liver did not show this difference. 4. The metabolism of [1-(14)C]glycollate was also studied in the liver tissue; glyoxylate formation was demonstrated and the formation of (14)CO(2) from this substrate was likewise unimpaired in the hyperoxaluric patients' liver tissue in these experiments. 5. Glycine was not metabolized by human kidney, liver or blood cells under the conditions used. 6. These observations show that glyoxylate metabolism by the kidney is impaired in primary hyperoxaluria.  相似文献   

18.
The effects of administering low levels of aflatoxin B(1)-(14)C by crop intubation daily for 14 days to broiler chickens were determined. Studies on the distribution of (14)C in the blood, selected organs, tissues, and excreta were conducted. No toxic effects were observed in broiler chickens during the 14 days of the experiment. The broiler chickens excreted 90.64% of the (14)C administered. Of the (14)C retained, 11.04, 9.83, 4.30, 12.52, 31.66, and 30.63% were detected in the blood, liver, heart, gizzard, breast, and leg, respectively. Chemical assay of those samples demonstrating radioactivity revealed that 81.2% of the radioactivity in these substrates was not extractable by classical extraction procedures while approximately 10% was extractable. Treatment of aqueous extracts for conjugated steroids by treatments with beta-glucuronidase revealed that 31.5% of the (14)C detected in the aqueous extract was a liberated glucuronide conjugate of aflatoxin M(1)-(14)C.  相似文献   

19.
This report compares the ability of individual members of the 14-3-3 protein family to inhibit particular protein kinase C (PKC) isoforms. We also show that two of these 14-3-3 isoforms ( and ) specific to mammalian and avian brain arein vivo post-translationally modified forms of and respectively. The presence of this modification enhances the activity of 14-3-3 as an inhibitor of protein kinase C nearly two fold.A method for analysing isoforms of 14-3-3 on acid-urea gels is also described. This permits the complete separation of all major isoforms and their unequivocal identification by a range of isoform specific antisera. The activity of recombinant 14-3-3 and isoforms renatured by a novel method after separation by reverse phase HPLC are compared. The effects of diacylglycerol and the phorbol ester, PMA (phorbol 12-myristate 13 acetate) on the inhibition suggest that one of the sites of interaction of 14-3-3 may be the cysteine-rich (C1) domain in PKC.  相似文献   

20.
The olfactory system has a remarkable ability to detect and discriminate a vast variety of odorant molecules. In mammals, hundreds to thousands of odorant receptors (ORs) expressed in olfactory sensory neurons play an essential role in this discrimination. Odorants are recognized by ORs in a combinatorial fashion in which a single odorant activates a particular combination of receptors, leading to its perception as a particular aroma. It is well known that enantiomers emit different aromas in spite of exhibiting otherwise identical chemical properties. To elucidate the molecular basis for the difference, we recorded responses to l- and d-menthol in the mouse olfactory bulb and found that enantiomers elicited similar but overlapping and distinct receptor activation patterns. We then identified l-menthol-specific and d-menthol-biased receptors and performed detailed structure–activity relationship studies, revealing high stereoselectivity of the enantiospecific menthol receptor. The binding site on ORs appears to have evolved to distinguish subtle differences in very similar odorant structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号