首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A purification procedure is described yielding DNase I from bovine and rat parotid glands of high homogeneity. The apparent molecular masses of the DNases I isolated have been found by sodium dodecyl sulfate/polyacrylamide gel electrophoresis to be 34 and 32 kDa for bovine and rat parotid DNase I, respectively, and thus differ from the enzyme isolated from bovine pancreas (31 kDa). By a number of different criteria concerning their enzymic behaviour, the isolated enzymes could be clearly classified as DNases I, i.e. endonucleolytic activity preferentially on native double-stranded DNA yielding 5'-oligonucleotides, a pH optimum at about 8.0, the dependence of their enzymic activity on divalent metal ions, their inhibition by 2-nitro-5-thiocyanobenzoic acid and by skeletal muscle actin. Comparison of their primary structure by analysis of their amino acid composition and also two-dimensional fingerprints and isoelectric focusing indicate gross similarities between the enzymes isolated from bovine pancreas and parotid, but distinct species differences, i.e. between the enzymes isolated from bovine and rat parotid. All the DNases I are glycoproteins. From bovine parotid DNase I crystals suitable for X-ray structure analysis could be obtained. The DNases I from both parotid sources specifically interact with monomeric actin forming 1:1 stoichiometric complexes. Their binding constants to monomeric actin differ, being 2 X 10(8) M-1 and 5.5 X 10(6) M-1 for bovine and rat parotid DNase I, respectively. Only the enzyme isolated from bovine sources is able to depolymerize filamentous actin.  相似文献   

2.
Rat and bovine parotid gland and pancreas contain deoxyribonuclease I (DNAase I) activities in different amounts. The DNAase I activity in tissue homogenates of bovine and rat parotid gland can be inhibited by addition of monomeric actin, as with the enzyme of bovine pancreas. The isolated DNAase I species from bovine and rat parotid gland differ in their molecular weights and also in their affinities for monomeric actin, being lowest for rat parotid DNAase I (5 X 10(6)M(-1). Antibodies raised against rat and bovine parotid and bovine pancreatic DNAase I can be used to study the subcellular localization of DNAase I in these tissues by indirect immunofluorescence. DNAase I was found to be confined solely to the secretory granules of the tissue from which it was isolated.  相似文献   

3.
Deoxyribonuclease I (DNase I) activities were measured in 14 different tissues from humans and 5 other mammals (bovine, pig, rabbit, rat, and mouse) by using the single radial enzyme diffusion (SRED) method, which is a sensitive and nonradioactive assay for nucleases. The results indicated that these species are classifiable into three groups on the basis of their different tissue distributions of DNase I. In human and pig, the pancreas showed the highest activity of DNase I; in rat and mouse, the parotid glands showed the highest activity; and in bovine and rabbit, both pancreas and parotid glands showed high activity. Therefore we designated human and pig DNase I as pancreas type, rat and mouse DNase I as parotid type, and bovine and rabbit DNase I as pancreas-parotid (or mixed) type. DNase I of the pancreas type was more sensitive to low pH than the other types. DNase I of pancreas type is secreted into the intestinal tract under neutral pH conditions, whereas the other types are secreted from the parotid gland and have to pass through the very acidic conditions in the stomach. Differences in the tissue distribution and acid sensitivity of mammalian DNases I may provide important information about their digestive function from the evolutionary perspective.  相似文献   

4.
Total actin content and F:G actin ratio were determined in the liver cytosol of fish, frogs and mouse by measurements of inhibition of exogenous crystalline bovine pancreatic DNase I. Endogenous DNase I-like activity, was found in all examined livers after electrophoresis in the presence of sodium dodecyl sulfate and subsequent enzyme renaturation. It is concluded that DNase I-like enzymes occur in the liver cytosol in a latent form, probably bound to cytoplasmic actin.  相似文献   

5.
Cell death by apoptosis occurs in a wide range of physiological events including repertoire selection of lymphocytes and during immune responses in vivo. A hallmark of apoptosis is the internucleosomal DNA degradation for which a Ca2+,Mg(2+)-dependent endonuclease has been postulated. This nuclease activity was extracted from both rat thymocyte and lymph node cell nuclei. When incubated with nuclei harbouring only limited amounts of endogenous nuclease activity, the ladder pattern of DNA fragments characteristic of apoptosis was induced. This extractable nucleolytic activity was immunoprecipitated with antibodies specific for rat deoxyribonuclease I (DNase I) and was inhibited by actin in complex with gelsolin segment 1, strongly pointing to the presence of a DNase I-type enzyme in the nuclear extracts. COS cells transiently transfected with the cDNA of rat parotid DNase I expressed the enzyme, and their nuclei were able to degrade their DNA into oligosome-sized fragments. PCR analysis of mRNA isolated from thymus, lymph node cells and kidney yielded a product identical in size to that from rat parotid DNase I. Immunohistochemical staining with antibodies to rat DNase I confirmed the presence of DNase I antigen in thymocytes and lymph node cells. The tissue distribution of DNase I is thus extended to tissues with no digestive function and to cells which are known to be susceptible to apoptosis. We propose that during apoptosis, an endonuclease indistinguishable from DNase I gains access to the nucleus due to the breakdown of the ER and the nuclear membrane.  相似文献   

6.
L1210 leukemia cell cytosol was analysed for the presence of DNase I activity. No free activity was determined in crude cytosol. DNase I enzyme was found to occur in a latent form bound to cytoplasmic actin. DNase-actin complex was partially isolated by Sephadex filtration and DNase I-like activity was demonstrated after SDS gel electrophoresis of the complex and enzyme renaturation. The results were compared with those for synthetic complex of pancreatic bovine DNase I and chicken muscle actin.  相似文献   

7.
Amino acid (aa) residues (Val-67 and Ala-114) have been suggested as being mainly responsible for actin-binding in human and bovine deoxyribonucleases I (DNase I). This study presents evidence of these two aa mutational mechanisms, not only for actin-binding but also for folding of DNase I in mammals, reptiles and amphibians. Human and viper snake (Agkistrodon blomhoffii) enzymes are inhibited by actin, whereas porcine, rat snake (Elaphe quadrivirgata), and African clawed frog (Xenopus laevis) enzymes are not. To investigate the role of aa at 67, mutants of rat snake (Ile67Val) and viper snake (Val67Ile) enzymes were constructed. After substitution, the rat snake was inhibited by actin, while the viper snake was not. For the role of aa at 114, mutants of viper snake (Phe114Ala), rat snake (Phe114Ala), African clawed frog (Phe114Ala), and porcine (Ser114Ala/Ser114Phe) enzymes were constructed. Strikingly, the substitute mutants for viper snake, rat snake and African clawed frog expressed no protein. The porcine (Ser114Ala) enzyme was inhibited by actin, but not the porcine (Ser114Phe) enzyme. These results suggest that Val-67 may be essential for actin-binding, that Phe-114 may be related to the folding of DNase I in reptiles and amphibians, and that Ala-114 may be indispensable for actin-binding in mammals.  相似文献   

8.
Deoxyribonuclease I (DNase I) was purified 26500-fold in 39% yield from porcine pancreas to electrophoretic homogeneity using three-step column chromatography. The purified enzyme was inhibited by an antibody specific to the purified enzyme but not by G-actin. A 1303 bp cDNA encoding porcine DNase I was constructed from total RNA from porcine small intestine using a rapid amplification of cDNA ends method, followed by sequencing. Mature porcine DNase I protein was found to consist of 262 amino acids. Unlike all other mammalian DNase I enzymes that are inhibited by G-actin, porcine DNase I has H65 and S114 instead of Y65 and A114, which presumably results in the lack of inhibition. Porcine DNase I was more sensitive to low pH than rat or bovine enzymes. Compared with their primary structures, the amino acid at position 110 was N in porcine enzyme, but S in rat and bovine enzymes. A porcine mutant enzyme in which N was substituted by S alone at position 110 (N110S) became resistant to low pH to a similar extent as the rat and bovine enzymes.  相似文献   

9.
A rabbit antiserum against bovine pancreatic DNase A is used to study the immunological reaction of DNases I. As shown by double immunodiffusion, bovine pancreatic DNases A, B, C, and D are immunologically identical, so are DNases from bovine pancreas and parotid and from ovine pancreas. These DNases also behave similarly in immunotitration of DNase activity and all are tightly bound to the immunoaffinity medium, requiring an acidic buffer with 10% ammonium sulfate to dissociate. On the other hand, porcine pancreatic and malted barley DNases that do not form precipitin lines remain active in solution with the antibody; however, in spite of the lack of inhibition these DNases are retarded (but not tightly bound) in immunoaffinity chromatography, suggesting interaction with the antibody. In thin layer isoelectric focusing, the parotid DNase, purified with the immunoaffinity technique, shows only two major active components whose isoelectric points correspond to those of DNases A and C of bovine pancreas. As estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of parotid DNase is 34,000, approximately 3,000 more than that of the pancreatic enzyme. However, both parotid and pancreatic DNases have the same NH2-terminal leucine, an identical COOH-terminal amino acid sequence, nearly identical amino acid compositions, and almost the same peptide maps. The molecular weight difference is due to differences in the carbohydrate side chains. Results of peptide analyses indicate that parotid DNase contains two glycopeptides; pancreatic DNase has only one. In addition, both parotid glycopeptides contain glucosamine and galactosamine while the pancreatic glycopeptide has only glucosamine.  相似文献   

10.
  • 1.1. DNase-I-like activity occurs in the carp (Cyprinus carpio) liver cytosol (supernatant 105,000g).
  • 2.2. The enzyme resembles DNase I from bovine pancreas in respect to the molecular mass (~31 kDa), pH (7.4) and ion requirements (Mg2+, Ca2+) and the ability to degrade native as well as denatured DNA.
  • 3.3. As judged by comparison of DNase zymograms obtained after native- and SDS-PAGE, the enzyme occurs in the three molecular forms of similar molecular weight and different charges.
  • 4.4. All these forms are inhibited by rabbit skeletal muscle actin as well as by endogenous actin isolated from the carp liver cytosol.
  • 5.5. DNase from the carp liver cytosol does not interact with the antibodies directed against DNase I from bovine pancreas and against DNase I from the rat and bovine parotid glands.
  相似文献   

11.
12.
W Kabsch  H G Mannherz    D Suck 《The EMBO journal》1985,4(8):2113-2118
The shape of an actin subunit has been derived from an improved 6 A map of the complex of rabbit skeletal muscle actin and bovine pancreatic DNase I obtained by X-ray crystallographic methods. The three-dimensional structure of DNase I determined independently at 2.5 A resolution was compared with the DNase I electron density in the actin:DNase map. The two structures are very similar at 6 A resolution thus leading to an unambiguous identification of actin as well as DNase I electron density. Furthermore the correct hand of the actin structure is determined from the DNase I atomic structure. The resolution of the actin structure was extended to 4.5 A by using a single heavy-atom derivative and the knowledge of the atomic coordinates of DNase I. The dimensions of an actin subunit are 67 A X 40 A X 37 A. It consists of a small and a large domain, the small domain containing the N terminus. Actin is an alpha,beta-protein with a beta-pleated sheet in each domain. These sheets are surrounded by several alpha-helices, comprising at least 40% of the structure. The phosphate peak of the adenine nucleotide is located between the two domains. The complex of actin and DNase I as found in solution (i.e., the actin:DNase I contacts which do not depend on crystal packing) was deduced from a comparison of monoclinic with orthorhombic crystals. Residues 44-46, 51, 52, 60-62 of DNase I are close to a loop region in the small domain of actin. At a distance of approximately 15 A there is a second contact in the large domain in which Glu13 of DNase I is involved. A possible binding region for myosin is discussed.  相似文献   

13.
Ehrlich ascites tumor cell extracts form a gel when warmed to 25 degrees C at pH 7.0 in sucrose solution, and the gel rapidly becomes a sol when cooled to 0 degrees C. This gel-sol transformation was studied quantitatively by determining the volume or the total protein of pellets of gel obtained by low-speed centrifugation. The gelation depended on nucleotide triphosphates, Mg2+, KCl, and a reducing agent. Gelation was inhibited reversibly by 0.5 microM free Ca2+, and 25--50 ng/ml of either cytochalasin B or D, but it was not affected by 10 mM colchicine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the gel was composed of six major proteins with mol wt greater than 300,000, 270,000, 89,000, 51,000, 48,000, and 42,000 daltons. The last component was identified as cell actin because it had the same molecular weight as muscle actin and bound with muscle myosin and tropomyosin. The role of actin in gelation was studied by use of actin-inhibitors. Gelation was inhibited by a chemically modified subfragment-1 of myosin, which binds with F-actin even in the presence of ATP, and by bovine pancreatic DNase I, which tightly binds with G-actin. Muscle G-actin neutralized the inhibitory effect of DNase I when added at an equimolar ratio to the latter, and it also restored gelation after its inhibition by DNase I. These findings suggest that gelation depends on actin. However, the extracts showed temperature-dependent, cytochalasin-sensitive, and Ca2+-regulated gelation as did the original extracts when the cell actin in the extracts was replaced by muscle actin, suggesting that components other than cell actin might be responsible for these characteristics of the gelation.  相似文献   

14.
Human pancreatic DNase I was purified extensively from duodenal juice of healthy subjects by a procedure including ammonium sulfate fractionation, ethanol fractionation, phosphocellulose fractionation, isoelectric focusing, and gel filtration. The final preparation was free of DNase II, pancreatic RNase, alkaline phosphatase, and protease. The enzyme had a molecular weight of approximately 30,000, as determined by gel filtration on Sephadex G-100, and showed maximum activity at pH 7.2-7.6. It required divalent cations for activity, and caused single-strand breaks by endonucleolytic attack on double- as well as single-stranded DNA molecules. The enzyme was inhibited by actin and bovine pancreatic DNase I antibody.  相似文献   

15.
A survey of DNase I in nine different carp tissues showed that the hepatopancreas has the highest levels of both DNase I enzyme activity and gene expression. Carp hepatopancreatic DNase I was purified 17,000-fold, with a yield of 29%, to electrophoretic homogeneity using three-step column chromatography. The purified enzyme activity was inhibited completely by 20 mM EDTA and a specific anti-carp DNase I antibody and slightly by G-actin. Histochemical analysis using this antibody revealed the strongest immunoreactivity in the cytoplasm of pancreatic tissue, but not in that of hepatic tissue in the carp hepatopancreas. A 995-bp cDNA encoding carp DNase I was constructed from total RNA from carp hepatopancreas. The mature carp DNase I protein comprises 260 amino acids, the same number as the human enzyme, however, the carp enzyme has an insertion of Ser59 and a deletion of Ala225 in comparison with the human enzyme. These alterations have no influence on the enzyme activity and stability. Three amino acid residues, Tyr65, Val67, and Ala114, of human DNase I are involved in actin binding, whereas those of carp DNase I are shifted to Tyr66, Val68, and Phe115, respectively, by the insertion of Ser59: the decrease in affinity to actin is due to one amino acid substitution, Ala114Phe. The results of our phylogenetic and immunological analyses indicate that carp DNase I is not closely related to the mammalian, avian or amphibian enzymes, and forms a relatively tight piscine cluster with the tilapia enzyme.  相似文献   

16.
17.
The aim of this study was to isolate and to characterize actin from the carp liver cytosol and to examine its ability to polymerize and interact with bovine pancreatic DNase I. Carp liver actin was isolated by ion-exchange chromatography, followed by gel filtration and a polymerization/depolymerization cycle or by affinity chromatography using DNase I immobilized to agarose. The purified carp liver actin was a cytoplasmic beta-actin isoform as verified by immunoblotting using isotype specific antibodies. Its isoelectric point (pI) was slightly higher than the pI of rabbit skeletal muscle alpha-actin. Polymerization of purified carp liver actin by 2 mM MgCl(2) or CaCl(2) was only obtained after addition of phalloidin or in the presence of 1 M potassium phosphate. Carp liver actin interacted with DNase I leading to the formation of a stable complex with concomitant inhibition of the DNA degrading activity of DNase I and its ability to polymerize. The estimated binding constant (K(b)) of carp liver actin to DNase I was calculated to be 1.85x10(8) M(-1) which is about 5-fold lower than the affinity of rabbit skeletal muscle alpha-actin to DNase I.  相似文献   

18.
We have characterized the interaction of bovine pancreatic deoxyribonuclease I (DNase I) with the filamentous (F-)actin of red cell membrane skeletons stabilized with phalloidin. The hydrolysis of [3H]DNA was used to assay DNase I. We found that DNase I bound to a homogenous class of approximately equal to 2.4 X 10(4) sites/skeleton with an association rate constant of approximately 1 X 10(6) M-1 S-1 and a KD of 1.9 X 10(-9) M at 20 degrees C. Phalloidin lowered the dissociation constant by approximately 1 order of magnitude. The DNase I which sedimented with the skeletons was catalytically inactive but could be reactivated by dissociation from the actin. Actin and DNA bound to DNase I in a mutually exclusive fashion without formation of a ternary complex. Phalloidin-treated red cell F-actin resembled rabbit muscle G-actin in all respects tested. Since the DNase I binding capacity of the skeletons corresponded to the number of actin protofilaments previously estimated by other methods, it seemed likely that the enzyme binding site was confined to one end of the filament. We confirmed this premise by showing that elongating the red cell filaments with rabbit muscle actin monomers did not appreciably add to their capacity to bind or inhibit DNase I. Saturation of skeletons with cytochalasin D or gelsolin, avid ligands for the barbed end of actin filaments, did not reduce their binding of DNase I. Furthermore, neither cytochalasin D nor DNase I alone blocked all of the sites for addition of monomeric pyrene-labeled rabbit muscle G-actin to phalloidin-treated skeletons; however, a combination of the two agents did so. In the presence of phalloidin, the polymerization of 300 nM pyrenyl actin on nuclei constructed from 5 nM gelsolin and 25 nM rabbit muscle G-actin was completely inhibited by 35 nM DNase I but not by 35 nM cytochalasin D. We conclude that DNase I associates uniquely with and caps the pointed (slow-growing or negative) end of F-actin. These results imply that the amino-terminal, DNase I-binding domain of the actin protomer is oriented toward the pointed end and is buried along the length of the actin filament.  相似文献   

19.
Summary This article will review recent progress on the purification of DNase I (E.C.3.1.4.5) from various sources and the characterization of multiple forms of the enzyme. The chemical basis of the multiple forms in bovine pancreas will be discussed in detail, while for other DNases, including those in ovine pancreas, bovine, mouse and rat parotid, and malt, only the evidence for multiplicity will be presented.  相似文献   

20.
Deoxyribonuclease I (DNase I)-like enzyme from the liver of the carp (Cyprinus carpio) was purified to homogeneity and further characterized. Ion exchange chromatography on DEAE-cellulose, molecular filtration on Sephacryl S-300 and Con A-Sepharose affinity chromatography were applied for enzyme isolation. Carp liver DNase, similarly to DNase I from bovine pancreas, was found to be an endonuclease that hydrolyses linear DNA from salmon sperm as well as circular DNA forms--plasmid and cosmid. The purified enzyme is a glycoprotein and shows microheterogeneity, as observed in DNase zymograms prepared after native and two-dimensional electrophoresis (2D-PAGE). The composition of sugar component of the enzyme was characterized. Special attention was focused on the ability of carp liver DNase to interact with carp liver actin. The carp liver enzyme was inhibited by endogenous actin. The estimated binding constant of carp liver DNase to carp liver actin was calculated to be 1.1 x 10(6) M(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号