首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Belgian Blue Cattle breed, coat color variation is mainly under the influence of a single autosomal locus, the roan locus, characterized by a pair of codominant alleles: r + (black) and R (white). Heterozygous r + R animals have intermingled black and white hairs, yielding the ``blue' phenotype typical of the breed. Major interest for the roan locus stems from its pleiotropic effect on fertility, owing to the critical role of the R allele in the determinism of White Heifer Disease. We describe the linkage mapping of the roan locus to bovine Chromosome (Chr) 5, in the interval between microsatellite markers BPI and AGLA293, with an associated lodscore of 11.2. Moreover, we map a candidate gene, the Steel locus coding for the mast cell growth factor, to bovine Chr 5. Received: 30 May 1995 / Accepted: 6 September 1995  相似文献   

2.
The roan coat color is characterized by white hairs intermingled with colored hairs. Candidate genes based on comparative phenotypes in horses and cattle involve the KIT and KIT ligand (MGF) genes. Here, we report the result of the whole genome scanning to detect genomic regions responsible for the roan coat color, using a three-generation pedigree of 62 pigs in an intercross between Landrace and Korean native pig. These pigs were genotyped using the PorcineSNP 60 BeadChip (Illumina, USA). The whole genome scan indicated that three genomic regions, 35~36 Mb, 38~39 Mb, and 58~59 Mb on SSC8, were commonly and highly associated/linked with the roan phenotype in the case/control, sib-pair, and linkage test, respectively. The porcine KIT was selected as a candidate gene, because it is located in one of the three significant regions and its function is related to coat color formation. SNPs and Indels within coding sequence (CDS), promoter, and 3′-UTR of KIT were surveyed. Twenty-two SNPs in the CDS reported previously, as well as nine variations in promoter (2 SNPs) and 3′-UTR (5 SNPs and 2 Indels) were detected. Although no causative mutations were identified, these results will help to elucidate the genetic mechanisms involved in the expression of the roan phenotype and will aid in identifying key mutations responsible for the roan phenotype in further studies.  相似文献   

3.
The white belt pattern of Brown Swiss cattle is characterized by a lack of melanocytes in a stretch of skin around the midsection. This pattern is of variable width and sometimes the belt does not fully circle the body. To identify the gene responsible for this colour variation, we performed linkage mapping of the belted locus using six segregating half-sib families including 104 informative meioses for the belted character. The pedigree confirmed a monogenic autosomal dominant inheritance of the belted phenotype in Brown Swiss cattle. We performed a genome scan using 186 microsatellite markers in a subset of 88 animals of the six families. Linkage with the belt phenotype was detected at the telomeric region of BTA3. Fine-mapping and haplotype analysis using 19 additional markers in this region refined the critical region of the belted locus to a 922-kb interval on BTA3. As the corresponding human and mouse chromosome segments contain no obvious candidate gene for this coat colour trait, the mutation causing the belt pattern in the Brown Swiss cattle might help to identify an unknown gene influencing skin pigmentation.  相似文献   

4.
Spider Lamb Syndrome (SLS) is a semi-lethal congenital disorder, causing severe skeletal abnormalities in sheep. The syndrome has now been disseminated into several sheep breeds in the United States, Canada, and Australia. The mode of inheritance for SLS is autosomal recessive, making the identification and culling of carrier animals difficult due to their normal phenotype. Two large pedigrees segregating for the SLS mutation were established, and a genome scan with genetic markers from previously published genome maps of cattle and sheep was used to map the locus causing SLS. Genetic linkage between SLS and several microsatellite markers, OarJMP8, McM214, OarJMP12, and BL1038, was detected, thereby mapping the SLS locus to the telomeric end of ovine Chromosome (Chr) 6. Alignment of ovine Chr 6 with its evolutionary ortholog, human Chr 4, revealed a positional candidate gene, fibroblast growth factor receptor 3 (FGFR3). Received: 10 June 1998 / Accepted: 23 September 1998  相似文献   

5.
An 11-bp deletion in the bovine myostatin ( MSTN ) gene was identified as the causative mutation for the double-muscling phenotype in Belgian Blue and Asturiana cattle. More recently, this mutation was also identified in the South Devon breed of cattle, in which it has been found to be associated with a general increase in muscle mass. The present study found that the mutant allele was also segregating in a commercial population of Scottish Aberdeen Angus beef cattle. The mutation was found at a low frequency (0.04) with no animals homozygous for the mutation in the sample population (536 animals). The effects of this mutation on various carcass traits of economic interest were then tested. We found that the mutation significantly increased carcass weight, sirloin weight, hindquarter weight, muscle conformation score and eye muscle area, but had no effect on the fat traits.  相似文献   

6.
We report association mapping of a locus on bovine chromosome 3 that underlies a Mendelian form of stunted growth in Belgian Blue Cattle (BBC). By resequencing positional candidates, we identify the causative c124-2A>G splice variant in intron 1 of the RNF11 gene, for which all affected animals are homozygous. We make the remarkable observation that 26% of healthy Belgian Blue animals carry the corresponding variant. We demonstrate in a prospective study design that approximately one third of homozygous mutants die prematurely with major inflammatory lesions, hence explaining the rarity of growth-stunted animals despite the high frequency of carriers. We provide preliminary evidence that heterozygous advantage for an as of yet unidentified phenotype may have caused a selective sweep accounting for the high frequency of the RNF11 c124-2A>G mutation in Belgian Blue Cattle.  相似文献   

7.
In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10‐bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large‐scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild‐type allele at the co‐dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named ‘cool gray’. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.  相似文献   

8.
9.
The molecular background of many loci affecting coat colour inheritance in cattle is still incompletely characterized, although it is known that coat colour results from the joint effects of several loci, e.g. agouti, extension and dilution. Dilution alleles are responsible for a dilution effect on the original coat colour of an individual, which is determined by the agouti and extension loci. Different loci affecting dilution of pigment are suggested in Charolais (Dc) and Simmental (Ds). To enable chromosomal mapping of the Dc mutation, 133 animals from an F2 full-sib resource population generated from a cross of Charolais and German Holstein were scored for the coat colour dilution phenotype. Linkage analysis covering all autosomes revealed a significant linkage of the dilution phenotype with microsatellite markers on bovine chromosome 5. No recombination was observed between marker ETH10 and the Dc locus. Positional and functional information identified the bovine silver homolog (SILV) gene as a candidate for the Dc mutation. Results from comparative sequencing of the SILV gene in individuals with different dilution coat colour phenotypes confirmed the presence of a c.64G>A non-synonymous mutation, which had previously been identified in the Charolais breed. The alleles at this locus were associated with coat colour dilution in this study. However, further investigation of colour inheritance within the F2 resource population indicated that a single diallelic mutation in the SILV gene cannot explain the total observed variation of coat colour dilution.  相似文献   

10.
Naturally, hornless cattle are called polled. Although the POLL locus could be assigned to a c. 1.36‐Mb interval in the centromeric region of BTA1, the underlying genetic basis for the polled trait is still unknown. Here, an association mapping design was set up to refine the candidate region of the polled trait for subsequent high‐throughput sequencing. The case group comprised 101 homozygous polled animals from nine divergent cattle breeds, the majority represented by Galloway, Angus, Fleckvieh and Holstein Friesian. Additionally, this group included some polled individuals of Blonde d’Aquitaine, Charolais, Hereford, Jersey and Limousin breeds. The control group comprised horned Belgian Blue, Fleckvieh, Holstein Friesian and Illyrian Bu?a cattle. A genome‐wide scan using 49 163 SNPs was performed, which revealed one shared homozygous haplotype block consisting of nine neighbouring SNPs in all polled animals. This segment defines a 381‐kb interval on BTA1 that we consider to be the most likely location of the POLL mutation. Our results further demonstrate that the polled‐associated haplotype is also frequent in horned animals included in this study, and thus the haplotype as such cannot be used for population‐wide genetic testing. The actual trait‐associated haplotype may be revealed by using higher‐density SNP arrays. For the final identification of the causal mutation, we suggest high‐throughput sequencing of the entire candidate region, because the identification of functional candidate genes is difficult owing to the lack of a comparable model.  相似文献   

11.
Work on Belgian Blue cattle revealed that an 11 base pair (bp) deletion within the bovine myostatin gene (GDF8) is associated with the double-muscled phenotype seen in this breed. Investigations focusing on other European breeds known to show double-muscling identified several mutations within the coding region of the gene associated with the double-muscled phenotype in different breeds. The number of mutations found suggest that myostatin is highly variable within beef cattle. Variations that alter the structure of the gene product such that the protein is inactivated are associated with the most pronounced form of double-muscling as seen in the Belgian Blue. However, other mutations may have a less extreme affect on muscle development. While overt double-muscling gives rise to a high incidence of dystocia (calving difficulty), it is possible that some variants may give enhanced muscling, but with limited calving problems. We describe sequence analysis of the myostatin gene in ten beef breeds commonly used in the UK and show that the 11-bp deletion responsible for double-muscling in the Belgian Blue is also present in the South Devon cattle population. Allele frequencies and haplotypes in the South Devon and a polymerase chain reaction (PCR) based test for the deletion are described. PCR amplification across the deleted region provides a quick and effective test with clear identification of heterozygous individuals. We discuss our results with regard to the effect of genotype on phenotype and differences observed between the Belgian Blue and the South Devon.  相似文献   

12.
White Galloway cattle exhibit three different white coat colour phenotypes, that is, well marked, strongly marked and mismarked. However, mating of individuals with the preferred well or strongly marked phenotype also results in offspring with the undesired mismarked and/or even fully black coat colour. To elucidate the genetic background of the coat colour variations in White Galloway cattle, we analysed four coat colour relevant genes: mast/stem cell growth factor receptor (KIT), KIT ligand (KITLG), melanocortin 1 receptor (MC1R) and tyrosinase (TYR). Here, we show that the coat colour variations in White Galloway cattle and White Park cattle are caused by a KIT gene (chromosome 6) duplication and aberrant insertion on chromosome 29 (Cs29) as recently described for colour‐sided Belgian Blue. Homozygous (Cs29/Cs29) White Galloway cattle and White Park cattle exhibit the mismarked phenotype, whereas heterozygous (Cs29/wt29) individuals are either well or strongly marked. In contrast, fully black individuals are characterised by the wild‐type chromosome 29. As known for other cattle breeds, mutations in the MC1R gene determine the red colouring. Our data suggest that the white coat colour variations in White Galloway cattle and White Park cattle are caused by a dose‐dependent effect based on the ploidy of aberrant insertions and inheritance of the KIT gene on chromosome 29.  相似文献   

13.
14.
Belgian Blue cattle are known for their high degree of muscling and good carcass qualities. This high degree of muscling is mainly caused by a mutation in the myostatin gene (MSTN). Although the MSTN mutation is considered as fixed in the Belgian Blue breed, segregation is occurring in a sub-population bred for dual purpose. In the latter population, we observed an association between the mutation in MSTN and susceptibility to psoroptic mange, a skin disease caused by Psoroptes ovis mites that heavily plagues Belgian Blue cattle. In total, 291 animals were sampled and screened for their susceptibility for mange lesions and their MSTN genotype. Via linear mixed modelling, we observed that homozygous mutant animals had a significant increase in the size of mange lesions (+2.51% lesion extent) compared to homozygous wild type. These findings were confirmed with zero-inflated modelling, an animal model and odds analysis. Risk ratios for developing severe mange lesions were 5.9 times as high for homozygous mutant animals. All analyses confirmed an association between the MSTN genotype and psoroptic mange lesion size.  相似文献   

15.
On the use of DNA fingerprints for linkage studies in cattle   总被引:3,自引:0,他引:3  
To find a marker for the bovine "muscular hypertrophy" gene and for the "roan" locus, we have typed six cattle pedigrees totaling 540 animals for nine blood group systems, for 12 biochemical markers, for RFLPs at four loci, and with five probes revealing multilocus DNA fingerprints. Segregation analysis of the fingerprint bands showed that, in cattle, a fingerprint probe will reveal a mean of 7.6 clearly resolvable bands, behaving as simple, highly informative Mendelian entities characterized by a mean mutation rate of +/- 1/4500 gametes. For one of the bands, we observed a "mutation burst" generating germline mosaicism. Because some of the fingerprint bands were allelic or corresponded to clustered minisatellites, a mean of only 5.7 independent loci is explored per probe. Fingerprint bands revealed by different probes also show a clear propensity for close linkage, pointing toward nonrandom distribution of minisatellite sequences or the existence of minisatellite clusters. Although this reduces the power of fingerprints for linkage analysis substantially, we were able to demonstrate genetic linkage between fingerprint bands and at least three of the classical markers, to exclude the roan locus from 4.5 Morgans of the bovine genome with the DNA fingerprints and for an additional 2.5 Morgans with the classical markers, and to identify a solid candidate marker for the bovine muscular hypertrophy gene, yielding a lod score greater than or equal to 2.84 without any obliged recombinant.  相似文献   

16.
17.
White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white‐born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white‐born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid‐coloured controls. To the authors’ knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.  相似文献   

18.
In rabbit, the dilute locus is determined by a recessive mutated allele (d) that causes the dilution of both eumelanic and pheomelanic pigmentations. In mice, similar phenotypes are determined by mutations in the myosin VA, Rab27a and melanophilin (MLPH) genes. In this study, we investigated the rabbit MLPH gene and showed that a mutation in this gene appears responsible for the dilute coat colour in this species. Checkered Giant F1 families segregating for black and grey (diluted or blue) coat colour were first genotyped for a complex indel in intron 1 of the MLPH gene that was completely associated with the coat colour phenotype (θ = 0.00; LOD = 4.82). Then, we sequenced 6357 bp of the MLPH gene in 18 rabbits of different coat colours, including blue animals. A total of 165 polymorphisms were identified: 137 were in non‐coding regions and 28 were in coding exons. One of them was a frameshift deletion in exon 5. Genotyping the half‐sib families confirmed the complete cosegregation of this mutation with the blue coat colour. The mutation was analysed in 198 rabbits of 23 breeds. All Blue Vienna and all other blue/grey/ash rabbits in other breeds (Californian, Castor Rex, Checkered Giant, English Spot, Fairy Marburg and Fairy Pearly) were homozygous for this deletion. The identification of MLPH as the responsible gene for the dilute locus in rabbit provides a natural animal model for human Griscelli syndrome type 3 and a new mutant to study the role of this gene on pigmentation.  相似文献   

19.
The Spanish ``Asturiana' cattle breed is characterized by the segregation of a genetically determined muscular hypertrophy referred to as double-muscling or ``culones'. We demonstrate by linkage analysis that this muscular hypertrophy involves the mh locus previously shown to cause double-muscling in the Belgian Blue cattle breed, pointing towards locus homogeneity of this trait across both breeds. Moreover, using a twopoint and multipoint maximum likelihood approach, we show that flanking microsatellite markers are in linkage disequilibrium with the mh locus in both breeds albeit with different alleles. Finally, we discuss how allelic homogeneity across breeds might be exploited to achieve efficient genetic fine-mapping of the mh locus. Received: 13 September 1996 / Accepted: 20 January 1997  相似文献   

20.
The melanocortin 1 receptor (MC1R) gene was investigated as a candidate for plumage variations in Chinese painted quail, Coturnix chinensis. Four silent and two missense nucleotide polymorphisms were identified. The correspondent amino acid changes, p.Glu92Lys and p.Pro292Leu, were found in Blue Face and Red Breasted animals respectively. Blue Face is a melanic phenotype similar to the co‐dominant Extended Brown of Japanese quail, and both share the p.Glu92Lys mutation. The association of p.Pro292Leu with the recessive Red Breasted was confirmed in 23 animals from an experimental F2 cross.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号