首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leptin receptor (LEPR) gene consists of 20 exons divided over 1.75 Mb. Parts of bovine LEPR exon 4 (79 bp), exon 11 (95 bp) and exon 20 (513 bp) of 20 cows (Holstein-Friesian) were sequenced (AJ580799; AJ580800; AJ580801) in an attempt to find polymorphisms. In exons 4 and 11 no SNPs were found. In exon 20, a T to C missense mutation was found at nucleotide 115, which causes an amino acid substitution at residue 945 (T945M). Frequencies for alleles C and T were 0.93 and 0.07 respectively, in a population of 323 Holstein-Friesian cows and TT animals were not detected. Using genotypes of these cows an association study was performed for leptin concentrations during late pregnancy and lactation. Leptin concentrations were determined by radioimmunoassay (RIA). The T945M mutation showed an association with circulating leptin concentrations only during late pregnancy (P < 0.05) but not during lactation (P > 0.05). The CC genotype had higher concentrations than the CT genotype during this period. A combined effect with previously described leptin polymorphisms on prepartum leptin concentrations was observed, with one genotype combination having significantly lower levels of leptin up to 50 days, but interaction effects were not significant. The T945M polymorphism may have induced a structural change in the intracellular domain of the LEPR, which may have influenced the signal transduction pathway. However, the effect was found only for the heterozygous genotype because the TT genotype was not detected in this population of 323 Holstein-Friesian cows.  相似文献   

2.
An inheritable bleeding disorder with light coat color caused by an autosomal recessive gene has been reported in a population of Japanese black cattle. The disease has been diagnosed as Chediak-Higashi Syndrome (CHS) of cattle which correspond to a human inheritable disorder caused by mutation in LYST gene. To characterize the molecular lesion causing CHS in cattle, cDNAs encoding bovine LYST were isolated from a bovine brain cDNA library. The nucleotide and deduced amino acid sequences of bovine LYST had 89.6 and 90.2% identity with those of the human LYST gene, respectively. In order to identify the mutation within the LYST gene causing CHS in cattle, cDNA fragments of the LYST gene were amplified from an affected animal by RT-PCR and their nucleotide sequences were completely determined. Notably, a nucleotide substitution of A to G transition, resulting in an amino acid substitution of histidine to arginine (H2015R) was identified in the affected animal. The presence of the substitution was completely corresponding with the occurrence of the CHS phenotype among 105 members of pedigrees of the Japanese black cattle and no cattle of other populations had this substitution. These findings strongly suggested that H2015R is the causative mutation in CHS of Japanese black cattle. Received: 25 May 1999 / Accepted: 26 July 1999  相似文献   

3.

Background

Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both phenotypes are associated with the agouti signaling protein gene (ASIP).

Findings

We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results strongly support that the identified mutation is causative of the NLP phenotype.

Conclusions

Thus, we propose to name the c.[349 T > C] allele in donkeys, the anlp allele, which enlarges the panel of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0112-x) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Using genome-wide mutagenesis with N-ethyl-N-nitrosourea (ENU), a mouse mutant with cryptorchidism was identified. Genome mapping and exon sequencing identified a novel missense mutation (D294G) in Relaxin/insulin-like family peptide receptor 2 (Rxfp2). The mutation impaired testicular descent and resulted in decreased testis weight in Rxfp2 DG/DG mice compared to Rxfp2 +/DG and Rxfp2 +/+ mice. Testicular histology of the Rxfp2 DG/DG mice revealed spermatogenic defects ranging from germ cell loss to tubules with Sertoli-cell-only features. Genetic complementation analysis using a loss-of-function allele (Rxfp2 ?) confirmed causality of the D294G mutation. Specifically, mice with one of each mutant allele (Rxfp2 DG/?) exhibited decreased testis weight and failure of the testes to descend compared to their Rxfp2 +/? littermates. Total and cell-surface expression of mouse RXFP2 protein and intracellular cAMP accumulation were measured. Total expression of the D294G protein was minimally reduced compared to wild-type, but cell-surface expression was markedly decreased. When analyzed for cAMP accumulation, the EC50 was similar for cells transfected with wild-type and mutant RXFP2 receptor. However, the maximum cAMP response that the mutant receptor reached was greatly reduced compared to the wild-type receptor. In silico modeling of leucine rich repeats (LRRs) 7–9 indicated that aspartic acid 294 is located within the β-pleated sheet of LRR8. We thus postulate that mutation of D294 results in protein misfolding and aberrant trafficking. The ENU-induced D294G mutation underscores the role of the INSL3/RXFP2-mediated pathway in testicular descent and expands the repertoire of mutations known to affect receptor trafficking and function.  相似文献   

6.
7.
Cystathionine beta-synthase (CBS) deficiency is an autosomal recessive disorder characterized by homocystinuria and multisystem clinical disease. Patients responsive to pyridoxine usually have a milder clinical phenotype than do nonresponsive patients, and we studied the molecular pathology of this disorder in an attempt to understand the molecular basis of the clinical variation. We previously reported a T833C transition in exon 8 causing a substitution of threonine for isoleucine at codon 278 (I278T). By PCR amplification and sequencing of exon 8 from genomic DNA we have now detected the I278T mutation in 7 of 11 patients with in vivo pyridoxine responsiveness and in 0 of 27 pyridoxine-nonresponsive patients. Two pyridoxine-responsive patients are homozygous and five are heterozygous for I278T. We have now observed the I278T mutation in 41% (9 of 22) of the independent alleles in pyridoxine-responsive patients of varied ethnic backgrounds. In two of the compound heterozygotes we identified a novel mutation (G139R and E144K) in the other allele. The finding that the two patients who are homozygous for I278T have only ectopia lentis and mild bone demineralization suggests that this mutation is associated with both in vivo pyridoxine responsiveness and mild clinical disease. Compound heterozygous patients who have one copy of this missense mutation are likely to retain some degree of pyridoxine responsiveness.  相似文献   

8.
9.
The seven donkey breeds recognised by the French studbook are characterised by few coat colours: black, bay and grey. Normand bay donkeys seldom give birth to red foals, a colour more commonly seen and recognised in American miniature donkeys. Red resembles the equine chestnut colour, previously attributed to a mutation in the melanocortin 1 receptor gene (MC1R). We used a panel of 124 donkeys to identify a recessive missense c.629T>C variant in MC1R that showed a perfect association with the red coat colour. This variant leads to a methionine to threonine substitution at position 210 in the protein. We showed that methionine 210 is highly conserved among vertebrate melanocortin receptors. Previous in silico and in vitro analyses predicted this residue to lie within a functional site. Our in vivo results emphasised the pivotal role played by this residue, the alteration of which yielded a phenotype fully compatible with a loss of function of MC1R. We thus propose to name the c.629T>C allele in donkeys the e allele, which further enlarges the panel of recessive MC1R loss‐of‐function alleles described in animals and humans.  相似文献   

10.
In an inbred Iraqi Jewish family, we have studied three siblings with presenile cataract first noticed between the ages of 20 and 51 years and segregating in an autosomal recessive mode. Using microsatellite repeat markers in close proximity to 25 genes and loci previously associated with congenital cataracts in humans and mice, we identified five markers on chromosome 19q that cosegregated with the disease. Sequencing of LIM2, one of two candidate genes in this region, revealed a homozygous T-->G change resulting in a phenylalanine-to-valine substitution at position 105 of the protein. To our knowledge, this constitutes the first report, in humans, of cataract formation associated with a mutation in LIM2. Studies of late-onset single-gene cataracts may provide insight into the pathogenesis of the more common age-related cataracts.  相似文献   

11.
12.
The melanocyte-stimulating hormone receptor gene (MC1R) is the major candidate gene for the chestnut coat color in horses since it is assumed to be controlled by an allele at the extension locus. MC1R sequences were PCR amplified from chestnut (e/e) and non-chestnut (E/−) horses. A single-strand conformation polymorphism was found that showed a complete association to the chestnut coat color among 144 horses representing 12 breeds. Sequence analysis revealed a single missense mutation (83Ser → Phe) in the MC1R allele associated with the chestnut color. The substitution occurs in the second transmembrane region, which apparently plays a key role in the molecule since substitutions associated with coat color variants in mice and cattle as well as red hair and fair skin in humans are found in this part of the molecule. We propose that the now reported mutation is likely to be the causative mutation for the chestnut coat color. The polymorphism can be detected with a simple PCR-RFLP test, since the mutation creates a TaqI restriction site in the chestnut allele. Received: 20 May 1996 / Accepted: 31 July 1996  相似文献   

13.
Met-overaccumulating mutants provide a powerful genetic tool for examining both the regulation of the Met biosynthetic pathway and in vivo developmental responses of gene expression to altered Met levels. We have previously reported the identification of two Arabidopsis thaliana Met over-accumulation (mto) mutants, mto1-1 and mto2-1, that carry mutations in the genes encoding cystathionine gamma-synthase (CGS) and threonine synthase (TS), respectively. A third mutant, mto3-1, has recently been reported to carry a mutation in the gene encoding S-adenosylmethionine synthetase 3 (SAMS3). Here, we report the isolation of a new ethionine-resistant A. thaliana mutant that over-accumulates soluble Met approximately 20-fold in young rosettes. The causal mutation was determined to be a single, recessive mutation that was mapped to chromosome 3. Sequence analysis identified a single nucleotide change in the gene encoding SAMS3 that was distinct from the mto3-1 mutation and altered the amino acid sequence of the enzyme active site. This mutation was therefore referred to as mto3-2. Although Met over-accumulation in the mto3-2 mutant was similar to that in the mto2-1 mutant, CGS mRNA levels did not respond to the mto3-2 mutation and were similar to that in equivalent wild-type plants.  相似文献   

14.
Mutations in the melanocortin-4 receptor (MC4R) are associated with severe obesity, independent of their effect on cortisol or thyroid-stimulating hormone levels. We examined a morbidly obese male (BMI = 62 kg/m2) with a binge-eating disorder and eight family members for mutations in the MC4R gene and potential differences in leptin levels. Fifty healthy individuals served as controls. Sequence analysis revealed a novel heterozygous missense mutation (c.302 C>A, p.T101N) located in the second transmembrane domain of the receptor, which was not detected in controls. The Fisher exact test revealed an association between the T101N mutation and history of obesity (P < 0.05) in the family. The Kruskal-Wallis test showed an association between the mutation and the leptin/BMI ratio (P < 0.05), while there was no association between the T101N mutation and diabetes or arterial hypertension in the family. Although the available family was small, we could show a significant association between the heterozygous T101N mutation and obesity.  相似文献   

15.
16.
Lethal White Foal Syndrome is a disease associated with horse breeds that register white coat spotting patterns. Breedings between particular spotted horses, generally described as frame overo, produce some foals that, in contrast to their parents, are all white or nearly all white and die shortly after birth of severe intestinal blockage. These foals have aganglionosis characterized by a lack of submucosal and myenteric ganglia from the distal small intestine to the large intestine, similar to human Hirschsprung Disease. Some sporadic and familial cases of Hirschsprung Disease are due to mutations in the endothelin B receptor gene (EDNRB). In this study, we investigate the role of EDNRB in Lethal White Foal Syndrome. A cDNA for the wild-type horse endothelin-B receptor gene was cloned and sequenced. In three unrelated lethal white foals, the EDNRB gene contained a 2-bp nucleotide change leading to a missense mutation (I118K) in the first transmembrane domain of the receptor, a highly conserved region of this protein among different species. Seven additional unrelated lethal white foal samples were found to be homozygous for this mutation. No other homozygotes were identified in 138 samples analyzed, suggesting that homozygosity was restricted to lethal white foals. All (40/40) horses with the frame overo pattern (a distinct coat color pattern that is a subset of overo horses) that were tested were heterozygous for this allele, defining a heterozygous coat color phenotype for this mutation. Horses with tobiano markings included some carriers, indicating that tobiano is epistatic to frame overo. In addition, horses were identified that were carriers but had no recognized overo coat pattern phenotype, demonstrating the variable penetrance of the mutation. The test for this mutant allele can be utilized in all breeds where heterozygous animals may be unknowingly bred to each other including the Paint Horse, Pinto horse, Quarter Horse, Miniature Horse, and Thoroughbred. Received: 25 November 1997 / Accepted: 3 February 1998  相似文献   

17.
18.
Syndactyly in Holstein cattle is an autosomal recessive abnormality characterized by the fusion of the functional digits. This disorder has been previously mapped to the telomeric part of bovine chromosome 15. Here, we describe the fine-mapping of syndactyly in Holstein cattle to a 3.5-Mb critical interval using a comparative mapping approach and an extended pedigree generated by embryo transfer. We report genetic evidence for the exclusion of two genes previously suggested as candidates (EXT2 and ALX4) and describe the identification of a doublet mutation in complete linkage disequilibrium with syndactyly in one gene of the critical interval: LRP4. Finally, based on recent discoveries concerning the mouse mutants dan and mdig and a mouse knockout for Lrp4, we present solid evidence that the subsequent substitution in LRP4 exon 33 is a strong candidate causal mutation for syndactyly in Holstein cattle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号