首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine if neural crest cells are pluripotent and establish whether differentiation occurs in the absence of noncrest cells, a cell culture method was devised in which differentiation could be examined in clones derived from single, isolated neural crest cells. Single neural crest cells, which were isolated before the onset of in vivo migration, gave rise to three types of clones: pigmented, unpigmented, and mixed. Pigmented clones consisted of melanocytes only, whereas some unpigmented cells in mixed and unpigmented clones contained catecholamines, identifying them as adrenergic cells. Extracellular matrix derived from quail somite or chick skin fibroblast cultures stimulated adrenergic differentiation and axon formation. These results demonstrate for the first time the existence of pluripotent quail neural crest cells that give rise to at least two progeny, melanocytes and neuronal cells. They also suggest that continuous direct interactions with noncrest cells are not required for the differentiation of these two cell types. However, components of the extracellular matrix derived from noncrest cells may play an important role in expression of the adrenergic phenotype.  相似文献   

2.
A clonal approach to the problem of neural crest determination.   总被引:1,自引:0,他引:1  
A fundamental question regarding neural crest development is the possible pluripotential nature of this embryonic tissue. As a first step in examining this problem, clonal techniques are used to produce homogeneous populations of crest cells. Primary cultures of these cells are obtained by explanting neural tubes from Japanese quail in vitro and allowing crest cells to migrate away. The explant is removed, the outgrowth is isolated, dissociated with trypsin, and the cells plated at clonal density. Colonies derived in this manner fall into the following categories: all cells of the colony pigmented; none of the cells pigmented; and some of the cells pigmented, the remainder unpigmented. Pigmented colonies generally arise from small, round cells whereas the non-pigmented colonies usually originate from large, flattened polymorphous cells. Differentiation of melanocytes does not preclude their continued proliferation. The pigment phenotype, in addition, is stable through at least 25 generations. That the mixed colonies, in fact, are clonally derived is shown by physically isolating single cells. The identity of the non-pigment cells was not established in the present work. A possible neural fate is suggested, however, since nerve-like cells develop after the petri plates become overgrown. Neural clones did not form even though nerve growth factor activity is present as a normal constituent of the culture medium and was added as a supplement in some instances. These techniques permit the preparation of large, homogeneous populations of neural crest cells and afford an opportunity to examine aspects of crest determination heretofore impossible to study.  相似文献   

3.
Tumor-promoting phorbol esters were used to manipulate the in vitro development of neural crest cells. When plated at clonal density in secondary culture, quail neural crest cells from the trunk region gave rise to three types of colonies, pigmented, unpigmented, and mixed. Pigmented colonies consisted exclusively of melanocytes; up to 50% of the unpigmented and mixed colonies contained adrenergic nerve cells which could be identified by a catecholamine-specific histofluorescence method. Addition of potent tumor promoters to the culture medium shortened the doubling time of neural crest cells and altered their morphologic appearance. It also delayed the onset of pigmentation, prevented the expression of the adrenergic phenotype, reduced the number of unpigmented and mixed colonies, and increased the number of pigmented colonies, most likely by directing progenitor cells preferentially to the melanogenic pathway. There was a clear correlation between the ability of phorbol esters to promote skin tumors in mice and their ability to interfere with the in vitro development of quail neural crest cells. The potent promoters 12–0–tetradecanoyl phorbol 13–acetate (TPA) and phorbol 12,13–didecanoate (PDD) were most effective, phorbol 12,13–diacetate (PDA) was considerably less effective, the nonpromoting analogues 4–0–methyl 12–0–tetradecanoyl phorbol 13–acetate (4–0–Me-TPA) and 4α-phorbol 12,13–didecanoate (4α-PDD) and the parent alcohol phorbol (PHR) had little or no effect.  相似文献   

4.
Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural tube either during their migration or at their sites of localization. Here, we test the developmental potential of migrating trunk neural crest cells by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells as they migrate through the somite. By two days after injection, the LRD-labelled clones contained from 2 to 67 cells, which were distributed unilaterally in all embryos. Most clones were confined to a single segment, though a few contributed to sympathetic ganglia over two segments. A majority of the clones gave rise to cells in multiple neural crest derivatives. Individual migrating neural crest cells gave rise to both sensory and sympathetic neurons (neurofilament-positive), as well as cells with the morphological characteristics of Schwann cells, and other non-neuronal cells (both neurofilament-negative). Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. Our data demonstrate that migrating trunk neural crest cells can be multipotent, giving rise to cells in multiple neural crest derivatives, and contributing to both neuronal and non-neuronal elements within a given derivative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Photodynamic therapy (PDT) as a regime for melanoma is of limited success due to factors such as the efficacy of the photosensitizer used, penetration depth and the presence of pigment. We characterised a pigmented and an unpigmented melanoma cell line with respect to their phenotypes. Cell viability was assessed after exposure to hypericin, a UVA-activated photosensitizer. Exposure to 3 μM activated hypericin induced a cytoprotective (autophagic) response from both cell lines. However, the pigmented cells accumulated a large amount of glycogen in their cytoplasm. We hypothesise that the treatment induces an initial cytoprotective response through autophagy, but with increased stress results in a different mode of cell death in pigmented melanoma cells from unpigmented cells. These results indicate that hypericin-PDT could be an adjuvant therapy for melanoma.  相似文献   

6.
Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. Birth Defects Research (Part C) 102:263–274, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Umbilical cord blood (UCB) is a valuable source for hematopoietic progenitor cell therapy. Moreover, it contains another subset of non-hematopoietic population referred to as mesenchymal progenitor cells (MPCs), which can be ex vivo expanded and differentiated into osteoblasts, chondrocytes and adipocytes. In this study, we successfully isolated the clonogenic MPCs from UCB by limiting dilution method. These cells exhibited two different morphologic phenotypes, including flattened fibroblasts (majority) and spindle-shaped fibroblasts (minority). Both types of MPCs shared similar cell surface markers except CD90 and had similar osteogenic and chondrogenic potentials. However, the spindle-shaped clones possessed the positive CD90 expression and showed a greater tendency in adipogenesis, while the flattened clones were CD90 negative cells and showed a lower tendency in adipogenesis. The high number of flattened MPCs might be linked to the less sensitivity of UCB-derived MPCs in adipogenic differentiation.  相似文献   

8.
Retinal pigmented epithelia (RPE) isolated from chicken embryos of various developmental stages were dissociated into single cells, and their ability to re-express defferentiated characteristics in clonal culture was investigated. The lighty pigmented, columnar cells isolated from stage 25 to 29 embryos dissociated more easily than the heavily pigmeted, cuboidal cells from embryos of stages 30 to 34. The yield of RPE cells per embryo increased with donor age, paralleling the growth of the epithelium in vivo . However, the potential these cells to attach, to proliferate, and to form typical, welldifferentiated RPE colonies declined with donor age. Cells from stage 25 embryos developed exclusively into large, typical epithelial colonies which expressed all stages of differentiation from flat, unpigmented cells at the margin to cuboidal, pigmented cells in the centre. At the other end of the spectrum, cells from stage 34 embryos frequently formed small, atypical colonies of unpigmented cells, in addition to typical but relatively small colonies. The plating efficiency (calculated on the basis of pigmented colonies formed within 3 weeks) dropped from more than 2% at stage 25 to 0.01% at stage 34.  相似文献   

9.
In previous work, we found that the phorbol ester drug 12-O-tetradecanoyl phorbol acetate (TPA) reversed the developmental restriction of melanogenesis that normally occurs in neural crest-derived Schwann cell precursors around embryonic Day 5 of quail development. That is, TPA treatment of dorsal root ganglia (DRG) from 7-day quail embryos caused Schwann cell precursors to regain the ability to give rise to melanocytes. In this paper, we examine other long-term effects of TPA on the differentiative and migratory properties of neural crest and crest-derived DRG cells, using heterospecific grafting methods. We report that TPA treatment in culture increased the extent of cell migration following grafting into host embryos, including some ectopic migration into the central nervous system and other locations. TPA did not, however, seem to change the fate of these crest-derived cells, except that some DRG cells underwent pigmentation, as had been observed previously. Interestingly, graft cells associated with peripheral nerves were found to be exclusively unpigmented, whereas graft cells found in all other locations, including the central nervous system, were both pigmented and unpigmented. This suggests that peripheral nerves may act in a fashion antagonistic to the effects of TPA. These findings are consistent with the notion that TPA treatment causes early crest-derived cells to regain developmental properties lost with developmental age.  相似文献   

10.
We have shown that morpholine, a cyclic amine, exerts a selective inhibition of growth on melanocytic pigmented cell lines compared to nonpigmented cells. The ID50 of morpholine for the pigmented B-16 cell line HFH was 1200 micrograms/ml, compared to values greater than 2400 micrograms/ml for baby hamster kidney, Chinese hamster ovary and NP, an unpigmented primate cell line. Two other cyclic amines piperazine and piperidine, were similarly found to be selectively toxic to melanocytes. This selective toxicity could be synergistically enhanced by pretreatment of the cells with theophylline, a stimulator of tyrosinase activity, which indicates that the selective toxicity may be associated with melanin synthesis. Low passage HFH, high passage HFH and Syrian hamster melanoma RPMI 1846 cells that were pretreated with theophylline showed between 13 and 29% greater toxicity compared to controls treated with theophylline or morpholine alone. Unpigmented NP primate cells, Chinese hamster ovary and mouse fibroblast L929 remained unaffected. These cyclic amines join a list of other amines that have also been shown to be melanocytotoxic.  相似文献   

11.
We have tested the hypothesis that developmentally significant cellular subsets are present in the early stages of neural crest ontogenesis. Cultured quail trunk neural crest cells probed with the monoclonal antibodies HNK-1 and R24 exhibited heterogeneous staining patterns. Fluorescence-activated cell sorting was used to isolate the HNK-1+ and HNK-1- cell populations at 2 days in vitro. When these cell populations were cultured, the HNK-1+ sorted cells differentiated into melanocytes, unpigmented cells, and numerous catecholamine-positive (CA+) cells. In contrast, the HNK-1- sorted cells gave rise to melanocytes and unpigmented cells, but few, if any, CA+ cells. When neural crest cells at 2 days in vitro were labeled with R24 and sorted, both the R24+ the R24- sorted cell populations produced numerous CA+ cell, melanocytes, and unpigmented cells. These results provide evidence for the existence of developmental preferences in some subsets of neural crest cells early in embryogenesis.  相似文献   

12.
Different anteroposterior (AP) regions of the neural crest normally produce different cell types, both in vivo and in vitro. AP differences in neural crest cell fates appear to be specified in part by mechanisms that act prior to neural crest cell migration. We, therefore, examined the possibility that the fates of neural crest cells, like those of neural tube cells, can be regulated by interactions with Hensen's node. Using a transfilter co-culture system, we found that young (stage 3+ to 4) Hensen's node up-regulates the expression of two cranial-specific phenotypes (fibronectin and smooth muscle actin immunoreactivities) in mass cultures of trunk neural crest cells, and down-regulates the expression of a trunk-specific phenotype (melanin synthesis). The changes in phenotype produced by exposure to young Hensen's node were not accompanied by changes in the proliferation of either fibronectin immunoreactive cells or melanocytes. The capacity of Hensen's node to elicit changes in trunk neural crest cell phenotype decreased as the developmental age of the node increased and was lost by stage 6. In addition, old Hensen's node did not stimulate the expression of trunk-specific phenotypes in cranial neural crest cells, suggesting that cranial- and trunk-specific phenotypes are induced by different mechanisms. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Specific developmental changes in smooth muscle were studied in gizzards obtained from 6-, 8-, 10-, 12-, 14-, 16-, 18-, and 20-day chick embryos and from 1- and 7-day posthatch chicks. Myoblasts were actively replicating in tissue from 6-day embryos. Cytoplasmic dense bodies (CDBs) first appeared at Embryonic Day 8 (E8) and were recognized as patches of increased electron density that consisted of actin filaments (AFs), intermediate filaments (IFs), and cross-connecting filaments (CCFs). Although the assembly of CDBs was not synchronized within a cell, the number, size, and electron density of CDBs increased as age increased. Membrane-associated dense bodies (MADBs) also could be recognized at E8. The number and size of MADBs increased as age increased, especially after E16. Filaments with the diameter of thick filaments first appeared at E12. Smooth muscle cells were able to divide as late as E20. The axial intermediate filament bundle (IFB) could first be identified in 1-day posthatch cells and became larger and more prominent in 7-day posthatch cells. Immunogold labeling of 1- and 7-day posthatch cells with anti-desmin showed that the IFB contained desmin IFs. The developmental events during this 23-day period were classified into seven stages, based primarily on the appearance and the growth of contractile and cytoskeletal elements. These stages are myoblast proliferation, dense body appearance, thick filament appearance, dense body growth, muscle cell replication, IFB appearance, and appearance of adult type cells. Smooth muscle cells in each stage express similar developmental characteristics. The mechanism of assembly of myofilaments and cytoskeletal elements in smooth muscle in vivo indicates that myofilaments (AFs and thick filaments) and filament attachment sites (CDBs and MADBs) are assembled before the axial IFB, a major cytoskeletal element.  相似文献   

14.
Cell suspensions from the breast muscles of 10-day old chicken embryos were separated into non-myogenic, fibroblast-like cell fractions and a mononucleated, myogenic cell fraction by Percoll density centrifugation. Isolated populations were characterized by their morphology in both mass cultures and individual macroscopic clones and by the immunocytochemical detection of skeletal muscle- and smooth muscle-specific proteins in individual cells. Cell populations were also characterized by their protein patterns using sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The less dense, non-myogenic cells comprised 16% of the cells. In culture they were predominantly flattened, stellate cells and gave rise to clones lacking myotubes. These fibroblast-like cells were negative for skeletal muscle myosin or muscle type creatine phosphokinase. Less than 0.1% of these cells demonstrated strong fluorescence when stained with anti-desmin or anti-smooth muscle specific actin. This observation suggested that the vast majority of these cells were not related to vascular smooth muscle cells. Also, over 99% of the non-myogenic cells did not display characteristic properties of endothelial cells. The denser myogenic cell fraction comprised over 80% of the cells and in clonal cultures gave rise to about 70% myogenic clones. An additional 30% of clones from this fraction were non-myogenic indicating heterogeneity in this population. We conclude that Percoll centrifugation can be employed for the isolation of myogenic and non-myogenic cell populations directly from the embryonic muscle. Moreover, this procedure allows the direct analysis of cell-specific proteins (e.g., by gel electrophoresis) without the need for cell culturing. The results thus obtained closely reflect the status of the cells in the intact muscle.  相似文献   

15.
The quantity of pigmented and unpigmented cells was estimated in the retinal pigment epithelium (RPE) in ten newborn and five 20-days old aggregated chimaeric mice C/C----c/c. A strong correlation was shown in the proportion of cells of the paternal genotypes either in the whole RPE of right and left eyes or in its separate regions, i.e. dorsal, central, ventral. Random distribution was revealed in these RPE cells clones. A high correlation was shown between the number of RPE pigmented cells and percentage of coat pigmentation.  相似文献   

16.
D C Bennett 《Cell》1983,34(2):445-453
Various proposals that a stochastic event, "commitment," is the first and rate-limiting step in mammalian cell differentiation were tested in one cell type, B16C3 mouse melanoma cells. Differentiation (pigment production) was observed in time-lapse films and in cloned single cells. As predicted by all the theories, onset of differentiation was at widely variable times in different cells after stimulation; and selection experiments showed that little of the variability was genetic. Contrary to some theories, differentiation appeared unrelated to cell division. Two properties of the melanoma cells did not fit any of the theories: times of differentiation were highly correlated in sister cells; and differentiation could be reversed in a proportion of cells, which was highest at the lowest levels of pigmentation. Dedifferentiation was associated with cell proliferation, so that most pigmented clones were small and most unpigmented clones large. These findings are accommodated by a model in which functions associated with differentiation can switch on and off, but an inhibition of the off transition builds up in the on state.  相似文献   

17.
The type of variegation of eyes of white-mottled mutants of D. hydei, either small-spotted or large-spotted, depends on the specific chromosome rearrangement involved. This distinction between mutants, though handsome, is not absolute because very seldomly small-spotted types do show a larger pigment aggregate and some "large-spotted" flies have no large spots at all, but only minor spots. Because of a pleiotropic action of the white gene, we could study the variegation of Malpighian tubules. The quasi-linear array of Malpighian cells enables a thorough statistical analysis. The problem was in how far the variegation of the tubes that is correlated with the variegation of eyes (in as far as numbers of pigmented and unpigmented cells are concerned) is also connected with a cell-lineage type of determination. Statistics now show that in spite of temperature-induced great variation in the percentage of pigmented cells, all types studied show a nearly random distribution of pigmented and unpigmented cells in the Malpighian tubules. This implies that the cell-lineage type of determination is not only largely mutant-specific but also organ-specific, i.e., limited to eyes. A basic gradient, however, as characteristic for eyes, was also found in Malpighian tubes.  相似文献   

18.
Summary Recent studies have noted the presence of putative stem cells derived from the connective tissues associated with skeletal muscle, heart, and dermis. Long-term continuous cultures of these cells from each tissue demonstrated five distinct phenotypes of mesodermal origin, i.e. muscle, fat, cartilage, bone, and connective tissue. Clonal analysis was performed to determine whether these morphologies were the result of a mixed population of lineage-committed stem cells or the differentiation of pluripotent stem cells or both. Putative stem cells from four tissues (skeletal muscle, dermis, atria, and ventricle) were isolated and cloned. Combined, 1158 clones were generated from the initial cloning and two subsequent subclonings. Plating efficiency approximated 5.8%. Approximately 70% of the 1158 clones displayed a pure stellate morphology, while the remaining clones contained a mixture of stellate, chondrogenic- or osteogenic-like morphologies or both. When cultured in the presence of dexamethasone, cells from all clones differentiated in a time- and concentration-dependent manner into muscle, fat, cartilage, and bone. These results suggest that pluripotent mesenchymal stem cells are present within the connective tissues of skeletal muscle, dermis, and heart and may prove useful for studies concerning the regulation of stem cell differentiation, wound healing, and tissue restoration, replacement and repair.  相似文献   

19.
The coronary artery of the black Bengal goat was studied by light microscopy. The wall of the coronary artery consisted of the tunica intima, tunica media and tunica externa. The tunica intima consisted of a single layer of flattened endothelium. The tunica media was well-developed and composed of mainly of smooth muscle cells together with some fine elastic fibers. The tunica externa consisted of predominant collagen fibers, and some elastic fibers and smooth muscle cells. Elastic fibers in the tunica externa formed a circular arrangement around the tunica media. Sex differences were not observed. The media with well-developed smooth muscle cells may be responsible for changes in functional physiological conditions of the heart.  相似文献   

20.
Axonally transported protein labeled many trigeminal nerve endings in subepithelial regions of the anterior hard palate of the rat. Sensory endings were most numerous in the lamina propria near the tips of the palatal rugae where large connective tissue and epithelial papillae interdigitated. Two kinds of sensory ending were found there: “free” endings, and a variety of corpuscular endings. The “free” sensory endings consisted of bundles of unmyelinated axons separated from the connective tissue by relatively unspecialized Schwann cells covering part or all of their surface and a completely continuous basal lamina; they were commonly found running parallel to the epithelium or near corpuscular endings. The corpuscular sensory endings all had a specialized nerve form, specialized Schwann cells, and axonal fingers projecting into the corpuscular basal lamina or connective tissue. There were at least four distinct types of corpuscular ending: Ruffini-like endings were found among dense collagen bundles, and they had a flattened nerve ending with a flattened Schwann lamella on either side. Meissner endings had an ordered stack of flattened nerve terminals with flattened Schwann cells and much basal lamina within and around the corpuscle. Simple corpuscles were single nerve endings surrounded by several layers of concentric lamellar Schwann processes. Glomerular endings were found in lamina propria papillae or encircling epithelial papillae; they were a tangle of varied neural forms each of which had apposed flattened Schwann cells, and a layer of basal lamina of varied thickness. Fibroblasts often formed incomplete partitions around Meissner and simple corpuscles.

The axoplasm of all kinds of subepithelial sensory endings contained numerous mitochondria and vesicles, as well as occasional multivesicular bodies and lysosomes; the axoplasm of all endings was pale with few microtubules and neurofilaments. The specialized lamellar Schwann cells had much pinocytotic activity. Four kinds of junctions were found between the corpuscular sensory endings and the lamellar Schwann cells: (1) symmetric densities that resemble desmosomes; (2) asymmetric densities with either the neuronal or glial membrane more dense; (3) neural membrane densities adjacent to Schwann parallel inner and outer membrane densities; and (4) sites of apparent Schwann endocytosis associated with neural blebs. The “free” sensory endings only made occasional desmosome-like junctions with their Schwann cells.

These observations are discussed in relation to possible mechanosensory transduction mechanisms, with particular attention to axoplasmic structure, axonal fingers, and neural and nonneural cell associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号