首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The role of protein phosphorylation in secretion is not well understood. Here we show that yeast lacking the Snc1,2 v-SNAREs, or bearing a temperature-sensitive mutation in the Sso2 t-SNARE, are rescued at restrictive conditions by the addition of ceramide precursors and analogs to the growth medium. Rescue results from dephosphorylation of the Sso t-SNAREs by a ceramide-activated type 2A protein phosphatase (Sit4) involved in cell cycle control. Sso t-SNARE dephosphorylation correlated with its assembly into complexes with the Sec9 t-SNARE, both in vitro and in vivo, and with an increase in protein trafficking and secretion in cells. SNARE complexes isolated under these conditions contained only Sso and Sec9, suggesting that a t-t-SNARE fusion complex is sufficient to confer exocytosis. Mutation of a single PKA site (Ser79 to Ala79) in Sso1 resulted in a decrease in phosphorylation and was sufficient to confer growth to snc cells at restrictive conditions. Thus, modulation of t-SNARE phosphorylation regulates SNARE complex assembly and membrane fusion in vivo.  相似文献   

4.
Membrane proteins are key players in all living cells. To achieve a better understanding of membrane protein function, significant amounts of purified protein are required for functional and structural analyses. Overproduction of eukaryotic membrane proteins, in particular, is thus an essential yet non-trivial task. Hence, improved understanding of factors which direct a high production of eukaryotic membrane proteins is desirable. In this study we have compared the overproduction of all human aquaporins in the eukaryotic host Pichia pastoris. We report quantitated production levels of each homologue and the extent of their membrane localization. Our results show that the protein production levels vary substantially, even between highly homologous aquaporins. A correlation between the extents of membrane insertion with protein function also emerged, with a higher extent of membrane insertion for pure water transporters compared to aquaporin family members with other substrate specificity. Nevertheless, the nucleic acid sequence of the second codon appears to play an important role in overproduction. Constructs containing guanine at the first position of this codon (being part of the mammalian Kozak sequence) are generally produced at a higher level, which is confirmed for hAQP8. In addition, mimicking the yeast consensus sequence (ATGTCT) apparently has a negative influence on the production level, as shown for hAQP1. Moreover, by mutational analysis we show that the yield of hAQP4 can be heavily improved by directing the protein folding pathway as well as stabilizing the aquaporin tetramer.  相似文献   

5.
Current models for plasma membrane organization integrate the emerging concepts that membrane proteins tightly associate with surrounding lipids and that biogenesis of surface proteins and lipids may be coupled. We show here that the yeast general amino acid permease Gap1 synthesized in the absence of sphingolipid (SL) biosynthesis is delivered to the cell surface but undergoes rapid and unregulated down-regulation. Furthermore, the permease produced under these conditions but blocked at the cell surface is inactive, soluble in detergent, and more sensitive to proteases. We also show that SL biogenesis is crucial during Gap1 production and secretion but that it is dispensable once Gap1 has reached the plasma membrane. Moreover, the defects displayed by cell surface Gap1 neosynthesized in the absence of SL biosynthesis are not compensated by subsequent restoration of SL production. Finally, we show that down-regulation of Gap1 caused by lack of SL biogenesis involves the ubiquitination of the protein on lysines normally not accessible to ubiquitination and close to the membrane. We propose that coupled biogenesis of Gap1 and SLs would create an SL microenvironment essential to the normal conformation, function, and control of ubiquitination of the permease.  相似文献   

6.
A yeast mutant was isolated that was resistant to Bax-induced cell death. It supports a mutation leading to decreased amounts of the protein Uth1p. A strain in which the UTH1 gene is disrupted also exhibits resistance to Bax expression. The absence of Uth1p does not change the mitochondrial localization of Bax, its insertion in the mitochondrial outer membrane or its cytochrome c-releasing activity. On the other hand, the absence of Uth1p does prevent the appearance of other hallmarks related to Bax expression in yeast, such as oxidation of mitochondrial lipid, production of reactive oxygen species and maintenance of plasma membrane properties after ethanol stress. The absence of Uth1p was also found to induce resistance to rapamycin, a specific inducer of autophagy. This resistance only appears when cells are grown under respiratory conditions, but not under fermentative conditions, suggesting that Uth1p acts in an autophagic pathway involving mitochondria, in accordance with its main localization in the outer mitochondrial membrane. Taken together, these data show that Bax is able to activate a death pathway related to autophagy in yeast, which also exhibits typical hallmarks of apoptosis, revealing a possible dual function of Bax in both types of death. This hypothesis is discussed in the light of observations suggesting a co-regulation of apoptosis and autophagy in mammalian cells.  相似文献   

7.
PpENA1 is a membrane-spanning transporter from the moss Physcomitrella patens, and is the first type IID P-type ATPase to be reported in the plant kingdom. In Physcomitrella, PpENA1 is essential for normal growth under moderate salt stress, while in yeast, type IID ATPases provide a vital efflux mechanism for cells under high salt conditions by selectively transporting Na+ or K+ across the plasma membrane. To investigate the structural basis for cation-binding within the type IID ATPase subfamily, we used homology modeling to identify a highly conserved cation-binding pocket between membrane helix (MH) 4 and MH 6 of the membrane-spanning pore of PpENA1. Mutation of specific charged and polar residues on MHs 4-6 resulted in a decrease or loss of protein activity as measured by complementation assays in yeast. The E298S mutation on MH 4 of PpENA1 had the most significant effect on activity despite the presence of a serine at this position in fungal type IID ATPases. Activity was partially restored in an inactivated PpENA1 mutant by the insertion of two additional serine residues on MH 4 and one on MH 6 based on the presence of these residues in fungal type IID ATPases. Our results suggest that the residues responsible for cation-binding in PpENA1 are distinct from those in fungal type IID ATPases, and that a fungal-type cation binding site can be successfully engineered into the moss protein.  相似文献   

8.
To further elucidate the impact of fermentative stress on Saccharomyces cerevisiae wine strains, we have here evaluated markers of oxidative stress, oxidative damage and antioxidant response in four oenological strains of S. cerevisiae, relating these to membrane integrity, ethanol production and cell viability during fermentation in high-sugar-containing medium. The cells were sampled at different fermentation stages and analysed by flow cytometry to evaluate membrane integrity and accumulation of reactive oxygen species (ROS). At the same time, catalase and superoxide dismutase activities, trehalose accumulation, and protein carbonylation and degradation were measured. The results indicate that the stress conditions occurring during hypoxic fermentation in high-sugar-containing medium result in the production of ROS and trigger an antioxidant response. This involves superoxide dismutase and trehalose for the protection of cell structures from oxidative damage, and protein catabolism for the removal of damaged proteins. Cell viability, membrane integrity and ethanol production depend on the extent of oxidative damage to cellular components. This is, in turn, related to the 'fitness' of each strain, which depends on the contribution of individual cells to ROS accumulation and scavenging. These findings highlight that the differences in individual cell resistances to ROS contribute to the persistence of wine strains during growth under unfavourable culture conditions, and they provide further insights into our understanding of yeast behaviour during industrial fermentation.  相似文献   

9.
Iwahashi H  Odani M  Ishidou E  Kitagawa E 《FEBS letters》2005,579(13):2847-2852
Genome-wide mRNA expression profiles of Saccharomyces cerevisiae growing under hydrostatic pressure were characterized. We selected a hydrostatic pressure of 30 MPa at 25 degrees C because yeast cells were able to grow under these conditions, while cell size and complexity were increased after decompression. Functional characterization of pressure-induced genes suggests that genes involved in protein metabolism and membrane metabolism were induced. The response to 30 MPa was significantly different from that observed under lethal conditions because protein degradation was not activated under 30 MPa pressure. Strongly induced genes those that contribute to membrane metabolism and which are also induced by detergents, oils, and membrane stabilizers.  相似文献   

10.
Pre-tRNA splicing has been believed to occur in the nucleus. In yeast, the tRNA splicing endonuclease that cleaves the exon-intron junctions of pre-tRNAs consists of Sen54p, Sen2p, Sen34p, and Sen15p and was thought to be an integral membrane protein of the inner nuclear envelope. Here we show that the majority of Sen2p, Sen54p, and the endonuclease activity are not localized in the nucleus, but on the mitochondrial surface. The endonuclease is peripherally associated with the cytosolic surface of the outer mitochondrial membrane. A Sen54p derivative artificially fixed on the mitochondria as an integral membrane protein can functionally replace the authentic Sen54p, whereas mutant proteins defective in mitochondrial localization are not fully active. sen2 mutant cells accumulate unspliced pre-tRNAs in the cytosol under the restrictive conditions, and this export of the pre-tRNAs partly depends on Los1p, yeast exportin-t. It is difficult to explain these results from the view of tRNA splicing in the nucleus. We rather propose a new possibility that tRNA splicing occurs on the mitochondrial surface in yeast.  相似文献   

11.
12.
We have examined the production of the outer membrane proteins of the primary and secondary forms of Xenorhabdus nematophilus during exponential- and stationary-phase growth at different temperatures. The most highly expressed outer membrane protein of X. nematophilus was OpnP. The amino acid composition of OpnP was very similar to those of the porin proteins OmpF and OmpC of Escherichia coli. N-terminal amino acid sequence analysis revealed that residues 1 to 27 of the mature OpnP shared 70 and 60% sequence identities with OmpC and OmpF, respectively. These results suggest that OpnP is a major porin protein in X. nematophilus. Three additional proteins, OpnA, OpnB, and OpnS, were induced during stationary-phase growth. OpnB was present at a high level in stationary-phase cells grown at 19 to 30 degrees C and was repressed in cells grown at 34 degrees C. OpnA was optimally produced at 30 degrees C and was not present in cells grown at lower and higher temperatures. The production of OpnS was not dependent on growth temperature. In contrast, another outer membrane protein, OpnT, was strongly induced as the growth temperature was elevated from 19 to 34 degrees C. In addition, we show that the stationary-phase proteins OpnA and OpnB were not produced in secondary-form cells.  相似文献   

13.
Polarized growth in yeast requires cooperation between the polarized actin cytoskeleton and delivery of post-Golgi secretory vesicles. We have previously reported that loss of the major tropomyosin isoform, Tpm1p, results in cells sensitive to perturbations in cell polarity. To identify components that bridge these processes, we sought mutations with both a conditional defect in secretion and a partial defect in polarity. Thus, we set up a genetic screen for mutations that conferred a conditional growth defect, showed synthetic lethality with tpm1Delta, and simultaneously became denser at the restrictive temperature, a hallmark of secretion-defective cells. Of the 10 complementation groups recovered, the group with the largest number of independent isolates was functionally null alleles of RAS2. Consistent with this, ras2Delta and tpm1Delta are synthetically lethal at 35 degrees C. We show that ras2Delta confers temperature-sensitive growth and temperature-dependent depolarization of the actin cytoskeleton. Furthermore, we show that at elevated temperatures ras2Delta cells are partially defective in endocytosis and show a delocalization of two key polarity markers, Myo2p and Cdc42p. However, the conditional enhanced density phenotype of ras2Delta cells is not a defect in secretion. All the phenotypes of ras2Delta cells can be fully suppressed by expression of yeast RAS1 or RAS2 genes, human Ha-ras, or the double disruption of the stress response genes msn2Deltamsn4Delta. Although the best characterized pathway of Ras function in yeast involves activation of the cAMP-dependent protein kinase A pathway, activation of the protein kinase A pathway does not fully suppress the actin polarity defects, suggesting that there is an additional pathway from Ras2p to Msn2/4p. Thus, Ras2p regulates cytoskeletal polarity in yeast under conditions of mild temperature stress through the stress response pathway.  相似文献   

14.
Previously, a 2D gel electrophoresis approach was developed for the Escherichia coli inner membrane, which detects membrane protein complexes that are stable in sodium dodecyl sulfate (SDS) at room temperature, and dissociate under the influence of trifluoroethanol [R. E. Spelbrink et al., J. Biol. Chem. 280 (2005), 28742-8]. Here, the method was applied to the evolutionarily related mitochondrial inner membrane that was isolated from the yeast Saccharomyces cerevisiae. Surprisingly, only very few proteins were found to be dissociated by trifluoroethanol of which Lpd1p, a component of multiple protein complexes localized in the mitochondrial matrix, is the most prominent. Usage of either milder or more stringent conditions did not yield any additional proteins that were released by fluorinated alcohols. This strongly suggests that membrane protein complexes in yeast are less stable in SDS solution than their E. coli counterparts, which might be due to the overall reduced hydrophobicity of mitochondrial transmembrane proteins.  相似文献   

15.
In order to identify and characterize structural components in the nuclear membrane of Saccharomyces cerevisiae which show a cell-cycle dependent regulation, we have undertaken a combined biochemical/immunofluorescence microscopy approach. Antisera raised against nuclear membrane proteins from yeast lead to the identification of a 40 kDa membrane protein which cofractionated with nuclei upon cell fractionation. This 40 kDa membrane protein partitioned into the Triton X-114 phase and was not extracted from purified nuclei at alkaline pH. Using affinity-purified antibodies against this protein, the antigen was localized at the nuclear periphery suggesting that it is an integral constituent of the nuclear envelope. However, the 40 kDa antigen revealed a heterogenous distribution within the nuclear membrane: in indirect immunofluorescence microscopy, nuclei isolated from an asynchronously growing yeast culture showed either no immunodetectable antigen or contained it in a cap-, dot- or ring-like conformation. Using synchronized yeast cultures, we could demonstrate cell-cycle dependent changes of concentration and localization of the 40 kDa protein within the nuclear envelope.  相似文献   

16.
Prinz A  Hartmann E  Kalies KU 《Biological chemistry》2000,381(9-10):1025-1029
A characteristic feature of the co-translational protein translocation into the endoplasmic reticulum (ER) is the tight association of the translating ribosomes with the translocation sites in the membrane. Biochemical analyses identified the Sec61 complex as the main ribosome receptor in the ER of mammalian cells. Similar experiments using purified homologues from the yeast Saccharomyces cerevisiae, the Sec61p complex and the Ssh1p complex, respectively, demonstrated that they bind ribosomes with an affinity similar to that of the mammalian Sec61 complex. However, these studies did not exclude the presence of other proteins that may form abundant ribosome binding sites in the yeast ER. We now show here that similar to the situation found in mammals in the yeast Saccharomyces cerevisiae the two Sec61-homologues Sec61p and Ssh1p are essential for the formation of high-affinity ribosome binding sites in the ER membrane. The number of binding sites formed by Ssh1p under standard growth conditions is at least 4 times less than those formed by Sec61p.  相似文献   

17.
K+ transport in living cells must be tightly controlled because it affects basic physiological parameters such as turgor, membrane potential, ionic strength, and pH. In yeast, the major high-affinity K+ transporter, Trk1, is inhibited by high intracellular K+ levels and positively regulated by two redundant "halotolerance" protein kinases, Sat4/Hal4 and Hal5. Here we show that these kinases are not required for Trk1 activity; rather, they stabilize the transporter at the plasma membrane under low K+ conditions, preventing its endocytosis and vacuolar degradation. High concentrations (0.2 M) of K+, but not Na+ or sorbitol, transported by undefined low-affinity systems, maintain Trk1 at the plasma membrane in the hal4 hal5 mutant. Other nutrient transporters, such as Can1 (arginine permease), Fur4 (uracil permease), and Hxt1 (low-affinity glucose permease), are also destabilized in the hal4 hal5 mutant under low K+ conditions and, in the case of Can1, are stabilized by high K+ concentrations. Other plasma membrane proteins such as Pma1 (H+ -pumping ATPase) and Sur7 (an eisosomal protein) are not regulated by halotolerance kinases or by high K+ levels. This novel regulatory mechanism of nutrient transporters may participate in the quiescence/growth transition and could result from effects of intracellular K+ and halotolerance kinases on membrane trafficking and/or on the transporters themselves.  相似文献   

18.
Drewes G  Nurse P 《FEBS letters》2003,554(1-2):45-49
The kin1 protein kinase of the fission yeast Schizosaccharomyces pombe is a member of the PAR-1/MARK (partitioning-defective 1/microtubule-associated protein/microtubule affinity-regulating kinase) family important in eukaryotic cell polarity and cytoskeletal dynamics. We show here that kin1 plays a role in establishing the characteristic rod-shaped morphology of fission yeast. Cells in which kin1 was deleted are viable but are impaired in growth, and are rounded at one end or both ends. They are monopolar because after mitosis they fail to activate bipolar growth, and are delayed in cytokinesis, resulting in a high proportion of septated cells often with multiple septa. This phenotype can be partially rescued by heterologous expression of human MARKs, which restore bipolar growth in most cells, but do not correct the delay in cytokinesis. Using chromosomal epitope tagging, we show that kin1p localises to the cell ends, except during mitosis when it disappears from cell ends. After mitosis, kin1p first reappears at the new cell end. Overexpression of kin1 results in a loss of polarity, with partially or fully rounded cells. From these results we suggest that kin1 is required to direct the growth machinery to the cell ends.  相似文献   

19.
Frataxin, a small nuclear-encoded protein targeted to mitochondria, is known to play an important role in both the mitochondrial respiratory chain and iron homeostasis. The protein is highly conserved in most eukaryotic organisms with no major structural changes, suggesting that it serves a crucial function in all organisms. Recently, purified frataxin was used as a therapeutic treatment of Friedreich’s ataxia, a common degenerative disorder that results from a frataxin protein deficiency, by directly applying the protein to the diseased cells. In this report, we describe a novel and rapid method of synthesizing genes encoding frataxin proteins for the purpose of efficient protein production. The artificial yeast and human frataxin genes were synthesized by direct assembly of serial deoxyoligonucleotide primers designed based on the optimal nucleotide sequences. When we tested the expression of these synthetic genes in two E. coli host strains, the yeast frataxin gene was expressed 20 folds higher in Rosetta (DE3) cells than in BL21 (DE3) cells, whereas the expression levels of human frataxin were similar in both E. coli strains. Attenuation of the Fenton reactions by the purified yeast and human frataxin proteins was observed under the defined conditions, which suggests that the recombinant frataxin proteins are active and functional. The procedure described here could be applied to many known genes or to generate novel synthetic genes that can be redesigned by arranging functional domains from previously identified genes and to study the structure and function of synthetic recombinant proteins and potential usage.  相似文献   

20.
1. A study was made of the composition and structure of walls isolated from yeast grown in continuous culture at different rates, under three conditions of glucose limitation in which the concentrations of glucose and ammonium sulphate in the medium and the oxygen-transfer rate in the culture were varied, and one condition of NH(4) (+) limitation. 2. The contents of total glucan and total mannan in the walls were relatively little affected by the growth rate under any of the four sets of conditions. The phosphorus and protein contents of walls from yeast grown under each of the four conditions increased as the growth rate was decreased. Walls from yeast grown under NH(4) (+) limitation contained only half as much protein as walls from cells grown under glucose limitation. The proportion of lipid was greatest in walls from yeast grown under NH(4) (+) limitation. 3. A procedure was devised for fractionating isolated walls, based on the ease with which the glucan and mannan were extracted with water and with hot and cold 6% (w/v) potassium hydroxide solution. The percentage of glucan, mannan, protein and phosphorus in each of the fractions was affected by the rate of growth and by the nature of the substrate limitation. 4. The beta-fructofuranosidase activities of yeast grown under glucose limitation increased as the growth rate was lowered, but decreased at very low growth rates. The effects at low growth rates were probably due to repression of enzyme synthesis by residual glucose in the culture filtrate. The beta-fructofuranosidase activities of yeast grown under NH(4) (+) limitation were much lower than those from yeast grown under any of the conditions of glucose limitation. 5. Yeast cells grown at any of the rates under NH(4) (+) limitation were longer and thinner than those grown at the same rate under any of the conditions of glucose limitation. Mean cell volumes were dependent on growth rate but not on the nature of the substrate limitation. 6. Electron micrographs of thin sections of isolated walls showed that cells grown under NH(4) (+) limitation had a more porous structure than those from cells grown under any of the conditions of glucose limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号