首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacteria exhibit numerous responses to changes in the intensity and spectral quality of light. What sensors do cyanobacteria use to detect light and what are the mechanisms of signal transduction? The publication in 1996 of the complete genome sequence of the cyanobacterium Synechocystis 6803 provided a tremendous stimulus for research in this field, and many light‐sensors and signal transducers have now been identified. However, our knowledge of cyanobacterial light‐signal transduction remains fragmentary. This review summarizes what we know about the ways in which cyanobacteria perceive light, some of the ways which they respond to light signals and some recent achievements in elucidating the signal transduction mechanisms. Some problems in characterizing cyanobacterial signal transduction pathways are outlined and alternative experimental strategies are discussed.  相似文献   

2.
Interaction between conifers and angiosperms in New Zealand?s podocarp?broadleaved forests is a topic of enduring interest. We aimed to determine if the often discontinuous regeneration of the podocarps Dacrydium cupressinum and Prumnopitys ferruginea can be attributed to their seedlings? tolerating less shade than those of angiosperm canopy trees and/or to occupying a narrower range of light environments. We quantified the light environments (% diffuse light availability) naturally occupied by large seedlings (50?200 cm tall) of these two conifers and five co-occurring angiosperms, in an old-growth podocarp?broadleaved forest in the central North Island of New Zealand. Randomisation was used to compare the mean and variance of the light environments occupied by each species with those of the distribution of light environments in the forest understorey. The 10th percentiles of distributions were also calculated as an indicator of the deepest shade tolerated by each species. These parameters showed D. cupressinum to be essentially randomly distributed in relation to light availability, like the angiosperm Beilschmiedia tawa. Although this was also true of the mean light environment of the other conifer, P.?ferruginea, there was marginally significant evidence that this species was underrepresented at the shadiest microsites. In contrast, the angiosperms Elaeocarpus dentatus and Weinmannia racemosa showed strongly non-random patterns, occupying significantly brighter minimum and mean light environments than would be expected by chance. It therefore seems unlikely that the discontinuous population structures of podocarps in many forests result from an intolerance of shade at the large seedling stage. Furthermore, the similarity of the ranges of light environments occupied by D.?cupressinum and P.?ferruginea suggests that reported differences in population structure and successional position of these species are not attributable to differences in seedling shade tolerance.  相似文献   

3.
4.
Breaking glass?     
Why are women so under-represented at the top echelons of science? Why do so many drop out just as their careers should be blossoming? Are women in science being actively discriminated against by their peers, and, if, so what can be done about this? These were just a few of the puzzles reflected upon at a recent European meeting that examined the role of women in science. Thankfully, there is evidence that, today, there is real opportunity, as well as mere light, emerging through the ceiling that caps so many careers.  相似文献   

5.
? Premise of the study: Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. ? Methods: To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). ? Key results: Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. ? Conclusions: That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.  相似文献   

6.
Daily schedules of many organisms, including birds, are thought to affect fitness. Timing in birds is based on circadian clocks that have a heritable period length, but fitness consequences for individuals in natural environments depend on the scheduling of entrained clocks. This chronotype, i.e., timing of an individual relative to a zeitgeber, results from interactions between the endogenous circadian clock and environmental factors, including light conditions and ambient temperature. To understand contributions of these factors to timing, we studied daily activity patterns of a captive songbird, the great tit (Parus major), under different temperature and light conditions. Birds were kept in a light (L)-dark (D) cycle (12.5?L:11.5 D) at either 8°C or 18°C with ad libitum access to food and water. We assessed chronotype and subsequently tested birds at the same temperature under constant dim light (LL(dim)) to determine period length of their circadian clock. Thermal conditions were then reversed so that period length was measured under both temperatures. We found that under constant dim light conditions individuals lengthened their free-running period at higher temperatures by 5.7?±?2.1?min (p?=?.002). Under LD, birds kept at 18°C started activity later and terminated it much earlier in the day than those kept under 8°C. Overall, chronotype was slightly earlier under higher temperature, and duration of activity was shorter. Furthermore, individuals timed their activities consistently on different days under LD and over the two test series under LL(dim) (repeatability from .38 to .60). Surprisingly, period length and chronotype did not show the correlation that had been previously found in other avian species. Our study shows that body clocks of birds are precise and repeatable, but are, nonetheless, affected by ambient temperature. (Author correspondence: marina.lehmann@uni-konstanz.de ).  相似文献   

7.
Periodic food availability can act as a potent zeitgeber capable of synchronizing many biological rhythms in fishes, including locomotor activity rhythms. In the present paper we investigated entrainment of locomotor rhythms to scheduled feeding under different light and feeding regimes. In experiment 1, fish were exposed to a 12:12?h light/dark cycle and fed one single daily meal in the middle of the light phase. In experiment 2, we tested the effect of random versus scheduled feeding on the daily distribution of activity. During random feeding, meals were randomly scheduled with intervals ranging from 12 to 36?h, while scheduled feeding consisted of one single daily meal set in the middle of the light or dark phase. Finally, in experiment 3, we studied the synchronization of activity rhythms to feeding under constant darkness (DD) and after shifting the feeding cycle by either advancing or delaying the feeding cycle by 9?h. The results revealed that goldfish synchronized to feeding, overcame light entrainment and significantly changed their daily distribution of activity according to their feeding schedule. In addition, the daily activity pattern modulated by feeding differed between layers: a peak of activity being noticeable directly after feeding at the bottom, while an anticipatory behaviour was obvious at the surface of the tank. Under DD and no food, free-running rhythms averaging 25.5?± 1.9?h (mean?±?SD) were detected. In conclusion, some properties of feeding entrainment (e.g. anticipation of the feeding time, free-running rhythms following termination of periodic feeding, and the stability of ø after shifting the feeding cycle) suggested that goldfish have (a) separate but tightly coupled light- and food-entrainable oscillators, or (b) a single oscillator that is entrainable by both light and food (one synchronizer being eventually stronger than the other).  相似文献   

8.
Photic phase response curves (PRCs) have been extensively studied in many laboratory-bred diurnal and nocturnal rodents. However, comparatively fewer studies have addressed the effects of photic cues on wild diurnal mammals. Hence, we studied the effects of short durations of light pulses on the circadian systems of the diurnal Indian Palm squirrel, Funambulus pennanti. Adult males entrained to a light–dark cycle (12?h–12?h) were transferred to constant darkness (DD). Free-running animals were exposed to brief light pulses (250 lux) of 15?min, 3 circadian hours (CT) apart (CT 0, 3, 6, 9, 12, 15, 18 and 21). Phase shifts evoked at different phases were plotted against CT and a PRC was constructed. F. pennanti exhibited phase-dependent phase shifts at all the CTs studied, and the PRC obtained was of type 1 at the intensity of light used. Phase advances were evoked during the early subjective day and late subjective night, while phase delays occurred during the late subjective day and early subjective night, with maximum phase delay at CT 15 (?2.04?±?0.23?h), and maximum phase advance at CT 21 (1.88?±?0.31?h). No dead zone was seen at this resolution. The free-running period of the rhythm was concurrently lengthened (deceleration) during the late subjective day and early subjective night, while period shortening (acceleration) occurred during the late subjective night. The maximum deceleration was noticed at CT 15 (?0.40?±?0.09?h) and the maximum acceleration at CT 21 (0.39?±?0.07?h). A significant positive correlation exists between the phase shifts and the period changes (r?=?0.684, p?=?0.001). The shapes of both the PRC and period response curve (τRC) qualitatively resemble each other. This suggests that the palm squirrel’s circadian system is entrained both by phase and period responses to light. Thus, F. pennanti exhibits robust clock-resetting in response to light pulses.  相似文献   

9.
Light interacts with an organism''s integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism''s body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons.In order to study the directional patterns of light scattering from feathers, and their relationship to the bird''s milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple structural scales.  相似文献   

10.
One of the most important protein complexes involved in maintaining correct RNA levels in eukaryotic cells is the exosome, a complex consisting almost exclusively of exoribonucleolytic proteins. Since the identification of the exosome complex, seven years ago, much progress has been made in the characterization of its composition, structure and function in a variety of organisms. Although the exosome seems to accumulate in the nucleolus, it has been clearly established that it is also localized in cytoplasm and nucleoplasm. In accordance with its widespread intracellular distribution, the exosome has been implicated in a variety of RNA processing and degradation processes. Nevertheless, many questions still remain unanswered. What are the factors that regulate the activity of the exosome? How and where is the complex assembled? What are the differences in the composition of the nuclear and cytoplasmic exosome? What is the detailed structure of exosome subunits? What are the mechanisms by which the exosome is recruited to substrate RNAs? Here, we summarize the current knowledge on the composition and architecture of this complex, explain its role in both the production and degradation of various types of RNA molecules and discuss the implications of recent research developments that shed some light on the questions above and the mechanisms that are controlling the exosome.  相似文献   

11.
12.
Growth parameters of the diatom Astenonella formosa Hass, andits fungal parasite Rhizophydium planktoniacum Canter emend,were measured at five temperatures and six light intensitieswith a 15?9 h light:dark cycle, using laboratory cultures ofboth organisms. With the parameter values obtained, thresholdhost densities were calculated in order to estimate the effectsof light and temperature on survival and epidemic developmentof the parasite The uninfected host reached light-saturatedgrowth rates between 0.917 day1 at 21?C and 0 285 day1at 2?C. Under light limitation the optimum growth temperaturefor Asterionella decreased because of a reduced growth efficiencyGrowth inhibition at high irradiances was only observed at 2?CThe parasite reached the highest zoospore production at 2?Cand saturating irradiances: 30 2 zoospores per sporangium. Thisvalue was consistently reduced by lower irradiances and highertemperatures to only 2.2 zoospores at the opposite light andtemperature extremes Low light conditions depressed also theinfectivity of the zoospores At very low irradiances, they becamecompletely uninfective The light dependence of zoospore productionand infectivity was restricted to light intensities that limitedthe growth rate of the host. The development time of the sporangiaand the mfecti ve lifetime of the zoospores were not affectedby light but only by temperature, and ranged from 19.0 and 121 days respectively at 2?C to 1.9 and 2 1 days at 21?C- Theseeffects result in optimal conditions for the development ofa Rhizophydium epidemic at 11?C and a moderate light limitationof Astenonella At temperature above 7?C, the possibilities forepidemic development are only slightly affected by light andtemperature, except for very low irradiance levels, when thezoospores of the parasite become uninfective. However, below5?C the development of an epidemic is only possible at limitinglight levels. Conditions for survival of the parasite at lowhost densities are optimal at low temperatures and high irradiancelevels  相似文献   

13.
During the past century, the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16?h light at ~150?lux/8?h dark at ~0?lux) cycle or to light/dim light at night (dLAN; 16?h light at ~150?lux/8?h dim light at ~5?lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism.  相似文献   

14.
All organisms face attack from many natural enemies and all in turn have some means of defence. Can resistance evolve, and if it can, why doesn't it? Recent work on fruit flies and their parasitic wasps has shed light on these questions.  相似文献   

15.
Extracts from the biomass of Ruta graveolens and Ruta graveolens ssp. divaricata cultured in vitro under different light conditions (far-red, red and blue light, UV-A irradiation, in darkness and white light) were tested for the amounts of free phenolic acids and cinnamic acid (twelve compounds) as well as furanocoumarins and umbelliferone (seven compounds) using HPLC methods. Total amounts of the investigated groups of compounds in the cultures of both plants increased from 2.6 to 6.7 times, depending on light quality, and the maximum values reached were 106.50 and 1,276.74?mg?100?g?1 DW (in R. graveolens), and 106.97 and 262.54?mg?100?g?1 DW (in the subspecies), respectively. Both white light and blue light were equally beneficial for the total production of phenolic acids in cultures of both plants, whereas the total production of furanocoumarins was clearly better stimulated by blue light in R. graveolens and by darkness in the subspecies (i.e. the amounts were respectively 1.44 and 1.7 times higher than in the biomass cultivated under white light). The amounts of individual compounds in both plant cultures increased from about 2.2 to 26.3 times depending on light quality. The following bioactive compounds were obtained in quantities which are of interest from a practical perspective: in R. graveolens culture??protocatechuic acid (45?mg?100?g?1 DW), isopimpinellin (about 500?mg?100?g?1 DW) and bergapten (about 270?mg?100?g?1 DW), and in the subspecies culture: p-coumaric acid (70?mg?100?g?1 DW) and isopimpinellin (about 210?mg?100?g?1 DW).  相似文献   

16.
DNA芯片与应用   总被引:4,自引:0,他引:4  
DNA芯片就是利用光导原位化学合成或液相合成自动化点样,将数以万计的寡核苷酸固定于固相支持物硅片、尼龙膜上,与荧光素或同位素标记的特检样本DNA/cDNA杂交,通过对杂交信号分析反映样本中的DNA序列信息。它广泛应用基因表达、DNA测序、基因分型、基因突变与多态性检测和遗传作图等生物医学研究领域。  相似文献   

17.
唐峰  梁惠凌  王满莲 《广西植物》2016,36(5):570-573
为了解濒危植物广西八角莲对环境光强的适应性,该研究以广西八角莲同属渐危种八角莲为对照,采用Li-6400便携式光合测定系统对两种植物的光合光响应特性进行了比较研究,进而探讨广西八角莲的濒危机制。结果表明:广西八角莲与的八角莲的光饱和点分别为440和530μmol·m~(-2)·s~(-1),光补偿点为13.25和13.10μmol·m~(-2)·s~(-1),最大净光合速率为3.62和6.81μmol·m~(-2)·s~(-1),表观量子效率为0.065和0.042μmol·μmol~(-1),两种八角莲均具阴生草本植物的光合特性,但其光补偿点与饱和点均高于一般阴生草本,10%~30%阴蔽度的林下生境有利于两种八角莲的生长;两种植物相比较,广西八角莲的光合能力较弱,光饱和点较低,但其弱光下的量子效率较高。大部分光强下,八角莲的净光合速率、气孔导度和蒸腾速率均高于广西八角莲,但广西八角莲的瞬时水分利用效率却高于八角莲,表明广西八角莲的光合策略比较保守,以较低的光合积累为代价来维持较高的水分利用效率,以保持体内水分平衡。  相似文献   

18.
The terrestrial environment is complex, with many parameters fluctuating on daily and seasonal basis. Plants, in particular, have developed complex sensory and signaling networks to extract and integrate information about their surroundings in order to maximize their fitness and mitigate some of the detrimental effects of their sessile lifestyles. Light and temperature each provide crucial insights on the surrounding environment and, in combination, allow plants to appropriately develop, grow and adapt. Cross-talk between light and temperature signaling cascades allows plants to time key developmental decisions to ensure they are ‘in sync’ with their environment. In this review, we discuss the major players that regulate light and temperature signaling, and the cross-talk between them, in reference to a crucial developmental decision faced by plants: to bloom or not to bloom?  相似文献   

19.
Most species use daily light in one way or the other in regulation of their short and/or long term activities. Light is perceived by pigment(s) present in the retinal (RP) and/or extra-retinal photoreceptors (ERPs). ERPs may be located at various sites in the body but in non-mammalian vertebrates they are found predominantly in the pineal body and hypothalamic region of the brain, Light radiations directly penetrate brain tissues to reach and stimulate the hypothalamic (deep-brain) photoreceptors. How does light information finally reach to the clock is not fully understood in many vertebrate groups? In mammals, however, the light information from the retina to the clock (the hypothalamic suprachiasmatic nuclei, SCN) is relayed through the retino-hypothalamic tract (RHT) which originates from the retinal ganglion cells, and through the geniculo-hypothalamic tract (GHT) which originates from the photically responsive cells of a portion of the lateral geniculate nucleus (LGN), called the intergeniculate leaflet (IGL). A response to light (the photoperiodic response) is the result of the interpretation of light information by the photoperiodic system. Apart from the duration, the animals use the gradual shifts in the intensity and wavelength of daily light to regulate their photoperiodic clock system. The wavelengths to which photoreceptors are maximally sensitive or the wavelengths which have greater access to the photoreceptors can induce a maximal response. There can also be differential effects of wavelength and intensity of light on circadian process(es) involved in the entrainment and induction of the photoperiodic clock. This may have some adaptive implications. Entrainment to daily light-dark (LD) cycle may be achieved at dawn or dusk, depending whether the animal is day- or night-active, when there is relatively low intensity of light. By contrast, photoperiodic induction in many species occurs during long days of spring and summer when plenty of daylight at higher intensity is available later in the day.  相似文献   

20.
The question of whether any specific plant species are typically growing along railway tracks (the so-called “railway-wandering plants”) has been discussed for many years. This study proves the existence of a form of Geranium robertianum species growing along railway tracks in North–Eastern Poland. Floristic studies have been carried out in 246 areas along railway tracks. This particular species was found in 70 studied areas (28 %). Comparative studies were carried out on 12 plant populations growing in the fieldwork and in glasshouse cultivation. Plants growing along the railway tracks in Wali?y were different from all other studied populations. They were small (smaller by 31 %, max. by 57 % than other plants), with little leaf blades representing different shapes and colour. In studies of light absorption by photosynthetic apparatus (chlorophyll fluorescence) under conditions of exposure to high light intensity, the plants from Wali?y were proved to have a better adaptation capacity to stress conditions. Increased levels of anthocyanins—which provided better protection of the photosynthetic apparatus against insolation—were shown. The protective properties against water deficiencies and excessive insolation were genetically preserved and were found in the second generation of plants cultivated in a glasshouse. For the first time, a new plant form of G. robertianum—a “railway-wandering plant” adapted to the conditions prevailing along railway tracks—was confirmed to exist. The form has developed probably after 1886, when the Bia?ystok–Zubki railway was built, featuring the Wali?y railway station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号