首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of fungal phytotoxins: from basic studies to practical use   总被引:1,自引:0,他引:1  
Recent materials are summarized, pertaining to classification of fungal phytotoxins, methods of their isolation, and assays for biological activity. Producers of phytotoxic substances have been characterized, and the chemical nature of phytotoxins has been subjected to analysis. The review gives consideration to the mechanisms of action of phytotoxins on susceptible plants and the mechanisms of plant resistance to such agents. Other matters discussed include prospects of utilizing basic knowledge of the nature and mechanisms of action of phytotoxins for (1) developing means of plant protection against diseases and weeds and (2) identifying or classifying fungi (chemosystematics).  相似文献   

2.
Waterlogging affects large areas of agricultural land, resulting in severe economic penalties because of massive losses in crop production. Traditionally, plant breeding for waterlogging tolerance has been based on the field assessment of a range of agronomic and morphological characteristics. This review argues for a need to move towards more physiologically based approaches by targeting specific cellular mechanisms underling key components of waterlogging tolerance in plants. Also, while the main focus of researchers was predominantly on plant anoxia tolerance, less attention was given to plant tolerance to phytotoxins under waterlogged conditions. This paper reviews the production of major elemental and organic phytotoxins in waterlogged soils and describes their adverse effects on plant performance. The critical role of plasma membrane transporters in plant tolerance to secondary metabolite toxicity is highlighted, and ionic mechanisms mediating the this tolerance are discussed. A causal link between the secondary metabolite-induced disturbances to cell ionic homeostasis and programmed cell death is discussed, and a new ethylene-independent pathway for aerenchyma formation is put forward. It is concluded that plant breeding for waterlogging tolerance may significantly benefit from targeting mechanisms of tolerance to phytotoxins.  相似文献   

3.
《Plant science》1988,56(2):183-188
A flow cytometric method has been developed for the qualitative and quantitative evaluation of the biological activities of phytotoxins from plant pathogenic fungi. The method utilized fresh wheat (Triticum aestivum L.) leaf protoplast preparations treated with purified phytotoxins, triticone A-B and triticone D. Subsequently, protoplasts were exposed to fluorescein diacetate, and analyzed by flow cytometry. Information acquired included fluorescence owing to esterase activity on fluorescein diacetate, and chlorophyll autofluorescence. Results indicate that triticone A-B has a rapid dose-dependent toxic effect on wheat protoplasts but triticone D has no toxic effect. This method can also yield information on the mechanism of action of phytotoxins that are relatively unstable or available only in small quantities.  相似文献   

4.
Many plant pathogenic fungi and bacteria produce phytotoxins which are a vital part of their arsenal in causing plant disease. Some host-specific toxins have proved useful in enhancing our understanding of the biochemical mechanisms underlying plant disease resistance.  相似文献   

5.
The phytotoxicity ofFusarium metabolites: An update since 1989   总被引:1,自引:0,他引:1  
McLean M 《Mycopathologia》1996,133(3):163-179
The present article summarises the published phytotoxic effects of severalFusarium metabolites (mycotoxins, phytotoxins, antibiotics and pigments) since 1989. The phytotoxicity of many of the commonly isolated metabolites cannot be disputed, but their role in pathogenesis ofFusarium-induced plant diseases is uncertain. Plant species/varieties differ in their susceptibililty resistance to these toxinsin vitro, as well as toFusarium pathogens under field conditions. Such variations in plant response may reflect resistance mechanisms that operate at several levels, including an initial ability to prevent fungal invasion; prevention of fungal spread and toxin tolerance or degradation. Little is known about the mode of action of most of these metabolites on either animal or plant cells. Several novelFusarium metabolites have been isolated in the past few years. Many are toxic to animals and cell lines, but assessment of their phytotoxicity has largely been neglected. Since many plant pathogenic Fusaria produce a plethora of metabolites, the additive or synergistic actions of toxins in combination must be considered in plant pathology.  相似文献   

6.
Twelve genera of phytopathogenic fungi comprising 27 species previously reported to produce phytotoxins were tested concurrently for animal and plant toxicity. There appeared to be no direct relationship between plant and animal toxicity.  相似文献   

7.
Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents.  相似文献   

8.
Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents.  相似文献   

9.
10.
Several compounds related with plant defense and pharmacological activities have been isolated from sugarcane. Straw phytotoxins and their possible mechanisms of growth inhibition are largely unknown. A bioassay-guided fractionation of the phytotoxic constituents leachated from a sugarcane straw led to the isolation of trans-ferulic (trans-FA), cis-ferulic (cis-FA), vanillic (VA) and syringic (SA) acids. The straw leachates and their identified constituents significantly inhibited root growth of lettuce and four weeds. VA was more phytotoxic to root elongation than FA and SA. The identified phenolic compounds significantly increased leakage of root cell constituents, inhibited dehydrogenase activity and reduced chlorophyll content in lettuce. VA and FA inhibited mitotic index while SA increased cell division. Additive (VA-FA and FA-SA) and synergistic (VA-SA) interactions on root growth were observed at the response level of EC(25). Although the isolated compounds differed in their relative phytotoxic activities, the observed physiological responses suggest that they have a common mode of action. HPLC analysis indicated that sugarcane straw can potentially release 1.43 (ratio 2:1, trans:cis), 1.14 and 0.14mmolkg(-1) (straw dry weight) of FA, VA and SA, respectively. As phenolic acids are often found spatially concentrated in the top soil layers under plant straws, further studies are needed to establish the impact of these compounds in natural settings.  相似文献   

11.
Glycosyltransferases: managers of small molecules   总被引:1,自引:0,他引:1  
Studies of the glycosyltransferases (GTs) of small molecules have greatly increased in recent years as new approaches have been used to identify their genes and characterize their catalytic activities. These enzymes recognize diverse acceptors, including plant metabolites, phytotoxins and xenobiotics. Glycosylation alters the hydrophilicity of the acceptors, their stability and chemical properties, their subcellular localisation and often their bioactivity. Considerable progress has been made in understanding the role of GTs in the plant and the utility of GTs as biocatalysts, the latter arising from their regio- and enantioselectivity and their ability to recognize substrates that are not limited to plant metabolites.  相似文献   

12.
Ecophysiological Approach in Allelopathy   总被引:3,自引:0,他引:3  
Allelopathy is a process that can be present in many ecosystems, according to the literature. Nevertheless, the authors think that, due to the evolutionary constraints, especially from a co-evolution point of view, this process cannot be very extended except in some conditions. Allelopathy can be important when an invader plant affects to the autochthonous species, when soil microorganisms cannot cope with a new molecule and target plants have not co-evolved. It can be important in some conditions when there is a continuous release of allelochemicals into the environment or when there is a very limited metabolism of those substances. Most agricultural and forestry practices tend to increase the possibilities of such a process to be important. Allelopathy can be effective only when plants are in stress due to other mechanisms, for example, when there is a lack of water or competition for nutrients or light is strong. In those conditions, allelochemicals production has been shown to increase. Sometimes there are allelochemicals that are not normally produced if the plant is not under stress. Under stress, the target plant is also more susceptible to the effect of the released phytotoxins. A multidisciplinary ecophysiological approach is needed in studying allelopathy in conjunction with other mechanisms that affect plants. The study can range from the ecological level to the molecular one. New methods are requested to separate the effects of allelopathy from competition.  相似文献   

13.
Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive—and in some cases devastating—damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco‐friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry. Chirality 25:59–78, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
《Trends in plant science》2023,28(2):135-138
The wide occurrence of natural phytotoxins renders many crops unfit for human consumption. To overcome this problem and produce detoxified crop varieties, we propose the use of biotechnological strategies that can enhance the harvest index without the need to increase crop biomass or alter whole plant architecture.  相似文献   

15.
Rotting softly and stealthily   总被引:1,自引:0,他引:1  
The soft rot erwiniae, which are plant pathogens on potato and other crops world-wide, synthesize and secrete large quantities of plant cell wall degrading enzymes that are responsible for the soft rot phenotype, earning them the epithet 'brute force' pathogens. They have been distinguished from classic 'stealth' pathogens, such as Pseudomonas syringae, which possesses an extensive battery of Type III secreted effector proteins and phytotoxins to manipulate and suppress host defences. However, recent studies, including whole-genome sequencing, are revealing many components of stealth pathogenesis within the soft rot erwiniae (SRE), suggesting that 'stealth' and 'brute force' should not be regarded as mutually exclusive modes of pathogenesis.  相似文献   

16.
Evidente A  Andolfi A  Cimmino A 《Chirality》2011,23(9):674-693
Toxins produced by phytopathogenic fungi assume great importance because of their involvement in several plant diseases. Although such pathogens are known to have seriously damaged crops, forest, and environmental resources, they represent a very important tool to develop new environmentally friendly herbicides and fungicides. This review deals with the relationships between the biological activity of some phytotoxins produced by pathogenic fungi for major forest plants and for damaging weeds and their stereochemistry. In particular, the methods used to determine their relative and/or absolute configuration will be illustrated. These include the application of Mosher's and Murata's methods, X-ray diffractometric analysis, circular dichroism, and the use of computational methods to determine the theoretical optical rotatory power as well as the CD spectrum. The importance of determining the absolute configuration to achieve the total synthesis of some phytotoxins, interesting for their potential practical application, is also discussed.  相似文献   

17.
Although the ecological significance of mixtures of phytotoxins is recognized in research on chemical plant interference (allelopathy), few studies convincingly demonstrate the joint action of phytotoxin mixtures, key to understanding the ecological impact of these materials, using established models from other biological disciplines, e.g. toxicology and pharmacology. Addressing this need, the present study investigates the joint action of the phenolic acids, p -hydroxybenzoic, p -coumaric and ferulic acids on root growth inhibition of perennial ryegrass ( Lolium perenne L). The Additive Dose Model (ADM) isobole and estimated concentration of phenolic acid mixture were calculated on ED20, ED50 and ED80 from the dose–response curves for the phenolic acids applied alone or in mixtures of fixed ratios. The binary combination of three selected phenolic acids is generally antagonistic relative to the ADM. No evidence for synergistic activities of phenolic acids in the mixture was noted. Since allelopathic activities in nature are largely due to the presence of several compounds in a mixture, the present study advances understanding of the joint action of binary combination of allelochemicals in a mixture.  相似文献   

18.
就细菌除草剂近年来在研究现状、除草作用方式及存在的问题和解决方法等方面进行了综述,并探讨了了细菌除草剂的发展趋势和方向。  相似文献   

19.
Soil inoculation with liquid cultures of Bacillus megaterium 501 and Exophiala nigrum A-29 capable of degrading several organophosphorus pesticides accelerated growth and development of experimental plants, formation of their generative organs, and improved their productivity. This was particularly observed under stress plant growth conditions on phytotoxic peach substrates. The microorganisms inoculated can probably degrade phytotoxins present in soils, thereby favoring the plant development.  相似文献   

20.
Rice allelopathy and the possibility for weed management   总被引:1,自引:0,他引:1  
In attempts to control weeds in rice, much effort has been focused on rice allelopathy research for more than 30 years. Among screening methods that have been developed, some estimate the allelopathic potential of various rice cultivars in a limited time and space, which is less costly and can be conducted year round. Rice allelopathy activity is variety dependent and origin dependent, where Japonica rice shows greater allelopathic activity than Indica and Japonica–Indica hybrids. Allelopathic characteristics in rice are quantitatively inherited and several allelopathy‐involved traits have been identified. Numerous phytotoxins such as cytokinins, diterpenoids, fatty acids, flavones, glucopyranosides, indoles, momilactones (A and B), oryzalexins, phenols, phenolic acids, resorcinols and stigmastanols have been identified and determined as growth inhibitors in rice. However, the fate and actual modes of action of these compounds as well as other potent rice phytotoxins in nature are not well understood. The question of which compounds play a major role in rice allelopathy has remained obscure; however, rice allelopathy might be attributable to the interaction of all present allelochemicals. Despite locating genes determining or involving allelopathy in rice having attracted much effort, the introduction of these genes into target rice cultivars has not yet been achieved. Success in breeding new rice cultivars having good weed‐suppressing ability would benefit farmers in rice‐cultivating countries and play an important role in sustainable agricultural production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号