首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Over the last decade transgenic mouse models have become a common experimental tool for unraveling gene function. During this time there has been a growing expectation that transgenes resemble the in vivo state as much as possible. To this end, a preference away from heterologous promoters has emerged, and transgene constructs often utilize the endogenous promoter and gene sequences in BAC, PAC and YAC form without the addition of selectable markers, or at least their subsequent removal. There has been a trend toward controlled integration by homologous recombination, either at a characterized chromosomal localization or in some cases within the allele of interest. Markers such as green fluorescent protein (GFP), beta-galactosidase (LacZ), and alkaline phosphatase (AP) continue to be useful to trace transgenic cells, or transgene expression. The development of technologies such as RNA interference (RNAi), are introducing new ways of using transgenic models. Future developments in RNAi technology may revolutionize tissue specific inactivation of gene function, without the requirement of generating conditionally targeted mice and tissue specific recombinase mice. Transgenic models are biological tools that aid discovery. Overall, the main consideration in the generation of transgenic models is that they are bona fide biological models that best impart the disease model or biological function of the gene that they represent. The main consideration is to make the best model for the biological question at heart and this review aims to simplify that task somewhat. Here we take a historical perspective on the development of transgenic models, with many of the important considerations to be made in design and development along the way.  相似文献   

9.
The long term storage of hospital clinical records is becoming a big problem. A great reduction in the bulk of case notes can be achieved by compartmentalizing unstructured case notes. Such a system has many advantages for medical staff, and its widespread use would do much to alleviate storage problems in future years.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
It has long intrigued researchers why some but not all organisms can regenerate missing body parts. Plants are remarkable in that they can regenerate the entire organism from a small piece of tissue, or even a single cell. Epigenetic mechanisms that control chromatin organization are now known to regulate the cellular plasticity and reprogramming necessary for regeneration. Interestingly, although animals and plants have evolved different strategies and mechanisms to control developmental processes, they have maintained many similarities in the way they regulate chromatin organization. Given that plants can rapidly switch fate, we propose that an understanding of the mechanisms regulating this process in plant cells could provide a new perspective on cellular dedifferentiation in animals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号