首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite intensive effort, the antitumor efficacy of tumor vaccines remains limited in treating established tumors regardless of the potent systemic tumor-specific immune response and the increases of tumor infiltration of T effector cells. In the current study, we demonstrated that although lentivector (lv) immunization markedly increased Ag-dependent tumor infiltration of CD8 and CD4 T cells and generated Ag-specific antitumor effect, it simultaneously increased the absolute number of myeloid-derived suppressor cells and regulatory T cells in the tumor lesions. In addition, lv immunization induced expression of programmed death-ligand 1 in the tumor lesions. Furthermore, the tumor-infiltrating CD8 T cells expressed high levels of programmed death-1 and were partially dysfunctional, producing lower amounts of effector cytokines and possessing a reduced cytotoxicity. Together, these immune-suppression mechanisms in the tumor microenvironment pose a major obstacle to effective tumor immunotherapy and may explain the limited antitumor efficacy of lv immunization. The loss of effector function in the tumor microenvironment is reversible, and the effector function of CD8 T cells in the tumor could be partially rescued by blocking programmed death-1 and programmed death-ligand 1 pathway in vitro and in vivo, resulting in enhanced antitumor efficacy of lv immunization. These data suggest that immunization alone may exacerbate immune suppression in the tumor lesions and that methods to improve the tumor microenvironment and to rescue the effector functions of tumor-infiltrating T cells should be incorporated into immunization strategies to achieve enhanced antitumor efficacy.  相似文献   

2.
Programmed death-1 ligand (PD-L)1 and PD-L2 are ligands for programmed death-1 (PD-1), a member of the CD28/CTLA4 family expressed on activated lymphoid cells. PD-1 contains an immunoreceptor tyrosine-based inhibitory motif and mice deficient in PD-1 develop autoimmune disorders suggesting a defect in peripheral tolerance. Human PD-L1 and PD-L2 are expressed on immature dendritic cells (iDC) and mature dendritic cells (mDC), IFN-gamma-treated monocytes, and follicular dendritic cells. Using mAbs, we show that blockade of PD-L2 on dendritic cells results in enhanced T cell proliferation and cytokine production, including that of IFN-gamma and IL-10, while blockade of PD-L1 results in similar, more modest, effects. Blockade of both PD-L1 and PD-L2 showed an additive effect. Both whole mAb and Fab enhanced T cell activation, showing that PD-L1 and PD-L2 function to inhibit T cell activation. Enhancement of T cell activation was most pronounced with weak APC, such as iDCs and IL-10-pretreated mDCs, and less pronounced with strong APC such as mDCs. These data are consistent with the hypothesis that iDC have a balance of stimulatory vs inhibitory molecules that favors inhibition, and indicate that PD-L1 and PD-L2 contribute to the poor stimulatory capacity of iDC. PD-L1 expression differs from PD-L2 in that PD-L1 is expressed on activated T cells, placental trophoblasts, myocardial endothelium, and cortical thymic epithelial cells. In contrast, PD-L2 is expressed on placental endothelium and medullary thymic epithelial cells. PD-L1 is also highly expressed on most carcinomas but minimally expressed on adjacent normal tissue suggesting a role in attenuating antitumor immune responses.  相似文献   

3.
T follicular helper (T(FH)) cells are critical initiators in the development of T cell-dependent humoral immunity and the generation of protective immunity. We demonstrate that T(FH) cell accumulation and Ab production are negatively regulated by B7-H1 (programmed death ligand 1) in response to both helminth infection and active immunization. Following immunization of B7-H1(-/-) mice with keyhole limpet hemocyanin or helminth Ags, there is a profound increase in induction of T(FH) cells as a result of increased cell cycling and decreased apoptosis relative to wild-type mice. The increase in T(FH) cells in the absence of B7-H1 was associated with significant elevations in Ag-specific Ig response. Cotransfer experiments in vivo demonstrated that B7-H1 expression on B cells was required for negatively regulating T(FH) cell expansion and production of Ag-specific Ig. Treatment of immunized wild-type mice with anti-B7-H1 or anti-programmed death 1 mAbs, but not anti-B7-DC, led to a significant expansion of the T(FH) cell population and an enhanced Ag-specific Ig response. Our results demonstrate that the coinhibitory B7-H1/programmed death 1 pathway can limit the expansion of T(FH) cells and constrain Ag-specific Ig responses. This finding has direct implications for investigations examining the feasibility of therapeutically manipulating this pathway and reveals new insights into the regulation of the humoral immune response.  相似文献   

4.
Programmed death-1 ligand 1 (PD-L1) is a coinhibitory molecule that negatively regulates multiple tolerance checkpoints. In the NOD mouse model, PD-L1 regulates the development of diabetes. PD-L1 has two binding partners, programmed death-1 and B7-1, but the significance of the PD-L1:B7-1 interaction in regulating self-reactive T cell responses is not yet clear. To investigate this issue in NOD mice, we have compared the effects of two anti-PD-L1 Abs that have different blocking activities. Anti-PD-L1 mAb 10F.2H11 sterically and functionally blocks only PD-L1:B7-1 interactions, whereas anti-PD-L1 mAb 10F.9G2 blocks both PD-L1:B7-1 and PD-L1:programmed death-1 interactions. Both Abs had potent, yet distinct effects in accelerating diabetes in NOD mice: the single-blocker 10F.2H11 mAb was more effective at precipitating diabetes in older (13-wk-old) than in younger (6- to 7-wk-old) mice, whereas the dual-blocker 10F.9G2 mAb rapidly induced diabetes in NOD mice of both ages. Similarly, 10F.2H11 accelerated diabetes in recipients of T cells from diabetic, but not prediabetic mice, whereas 10F.9G2 was effective in both settings. Both anti-PD-L1 mAbs precipitated diabetes in adoptive transfer models of CD4(+) and CD8(+) T cell-driven diabetes. Taken together, these data demonstrate that the PD-L1:B7-1 pathway inhibits potentially pathogenic self-reactive effector CD4(+) and CD8(+) T cell responses in vivo, and suggest that the immunoinhibitory functions of this pathway may be particularly important during the later phases of diabetogenesis.  相似文献   

5.
Invariant NKT (iNKT) cells are a distinct subset of T lymphocytes that recognize glycolipid Ags. Upon TCR stimulation, iNKT cells promptly secrete a wide range of cytokines and therefore have been investigated as a target for immunotherapy. However, after primary activation, iNKT cells become hyporesponsive toward their ligand (anergy). The further mechanism behind iNKT cell anergy is poorly understood. We found that a low level of programmed death-1 (PD-1) was constitutively expressed on iNKT cells and that PD-1 expression was increased after stimulation and lasted at least 2 mo. Moreover, not only did blocking of the PD-1/PD ligand 1 (PD-L1) pathway prevent the induction of anergy in iNKT cells, but anergic iNKT cells also recovered responsiveness and these "rescued" cells efficiently mediated antitumor immunity. Our findings suggest that the PD-1/PD-L1 interaction is essential for the induction and maintenance of iNKT cell anergy.  相似文献   

6.
7.
A novel adenovirus expressing human 4-1BB ligand enhances antitumor immunity   总被引:13,自引:0,他引:13  
4-1BB ligand (4-1BBL), a member of the tumor necrosis factor (TNF) superfamily, interacts with 4-1BB (CDw137) expressed on activated T cells and delivers a costimulatory signal for T cell activation and growth. Various studies have demonstrated a role for murine 4-1BB in immune function, but relatively few investigations of human 4-1BB have been conducted. Here we report on the construction of a recombinant E1/E3-deleted adenovirus encoding human 4-1BBL (Ad4-1BBL) and its stimulation of antitumor immunity. Ad4-1BBL was able to efficiently infect several human adenocarcinoma cell lines and induce 4-1BBL expression on the cell surface within 24 h, this enhancing the antitumor activity not only of lymphokine-activated killer cells with a T cell phenotype (T-LAK) but also naive peripheral blood mononuclear cells (PBMC). This antitumor activity with T-LAK cells was further enhanced by addition of bispecific antibody (BsAb; anti-MUC1xanti-CD3). Cocultivation of Ad4-1BBL-infected tumor cells with either T-LAK cells or PBMC resulted in significant elevation of interferon-gamma (IFN-gamma), interleukin-2 (IL-2), and granulocyte-macrophage colony-stimulating factor (GM-CSF) production. Furthermore, remarkable tumor growth inhibition was observed in cholangiocarcinoma-grafted severe combined immunodeficient (SCID) mice to which Ad4-1BBL and T-LAK cells were administered when tumor size exceeded 5 mm in diameter. These results provide strong evidence in support of the efficacy of adenovirally delivered 4-1BBL for genetic immunotherapy of cancer.  相似文献   

8.
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy related to diverse etiological factors. Different oncogenic mechanisms and genetic variations lead to multiple HCC molecular classifications. Recently, an immune-based strategy using immune checkpoint inhibitors (ICIs) was presented in HCC therapy, especially with ICIs against the programmed death-1 (PD-1) and its ligand PD-L1. However, despite the success of anti-PD-1/PD-L1 in other cancers, a substantial proportion of HCC patients fail to respond. In this review, we gather current information on biomarkers of anti-PD-1/PD-L1 treatment and the contribution of HCC heterogeneity and hepatic cancer stem cells (CSCs). Genetic variations of PD-1 and PD-L1 are associated with chronic liver disease and progression to cancer. PD-L1 expression in tumoral tissues is differentially expressed in CSCs, particularly in those with a close association with the tumor microenvironment. This information will be beneficial for the selection of patients and the management of the ICIs against PD-1/PD-L1.  相似文献   

9.
The development of small molecule inhibitors of PD-1/PD-L1 is eagerly anticipated for treatment of cancer. We focused on the symmetry of the ternary complex structure of reported small molecule ligands and hPD-L1 homodimers, and designed partially- or fully-symmetric compounds for more potent inhibitors. The design of the new compounds was guided by our hypothesis that the designed symmetric compound would induce a flip of sidechain of ATyr56 protein residue to form a new cavity. The designed compound 4 exhibited substantially increased binding affinity to hPD-L1, as well as PD-1/PD-L1 inhibitory activity in physiological conditions. Compound 4 also showed a dose-dependent increase in IFN-γ secretion levels in a mixed lymphocyte reaction assay. These results not only indicate the feasibility of targeting the PD-1/PD-L1 pathway with small molecules, but illustrate the applicability of the symmetry-based ligand design as an attractive methodology for targeting protein-protein interaction stabilizers.  相似文献   

10.
《Cytotherapy》2020,22(12):734-743
Background aimsChimeric antigen receptor (CAR) T cells have achieved favorable responses in patients with hematologic malignancies, but the outcome has been far from satisfactory in the treatment of tumors with high expression of immunosuppressive molecules. To overcome this limitation, we modified CAR T cells to secrete types of human soluble programmed cell death protein 1 (PD-1) called sPD-1 CAR T cells.MethodsTo compare the effector function between second (conventional second-generation CAR targeting CD19) and sPD-1 CAR T cells, we measured cytotoxicity, cytokine secretion and activation markers incubated with or without tumor cells expressing CD19 and/or programmed cell death ligand 1 (PD-L1). Furthermore, the anti-tumor efficacy of second and sPD-1 CAR T cells was determined using an NSG mouse model bearing NALM-6-PD-L1. Finally, the underlying mechanism was investigated by metabolic parameters and RNA sequencing analysis of different CAR T cells.ResultsCompared with second CAR T cells, sPD-1 CAR T cells enhanced killing efficiency toward CD19+PD-L1+ tumor cells in vitro. Furthermore, sPD-1 CAR T cells reduced the tumor burden and prolonged overall survival of the NSG (NOD-SCID-IL2rg) mice bearing NALM-6-PD-L1. To explore the effect of soluble PD-1 on CAR T cells, we found that sPD-1 CAR T cells exhibited higher levels of activation and ameliorative profiles of differentiation, exhaustion, glycolysis and apoptosis.ConclusionsWith constitutive soluble PD-1 secretion, sPD-1 CAR T cells have tended to eradicate tumors with a high expression of PD-L1 more effectively than second CAR T cells. This may be due to soluble PD-1 enhancing apoptosis resistance, aerobic metabolism and a more “stem” differentiation of CAR T cells. Overall, our study presents a feasible strategy to increase the efficacy of CAR T cells.  相似文献   

11.
Surgical adhesions are a common and often severe complication of abdominal or pelvic injury that cause pelvic pain, bowel obstruction, and infertility in women. Current treatments are of limited effectiveness because little is known about the cellular and subcellular processes underlying adhesiogenesis. Recently, we showed that Th1 alpha beta CD4(+) T cells mediate the pathogenesis of adhesion formation in a rodent model of this disease process. In this study, we demonstrate that in mice these T cells home directly to the site of surgically induced adhesions and control local chemokine production in a manner dependent on the CD28 T cell costimulatory pathway. Conversely, the inhibitory programmed death-1 pathway plays a central role in limiting adhesiogenesis, as programmed death-1 blockade was associated with increased T cell infiltration, chemokine production, and a concomitant exacerbation of disease. Our results reveal for the first time that the development of postsurgical fibrosis is under the tight control of positive and negative T cell costimulation, and suggest that targeting these pathways may provide promising therapies for the prevention of adhesion formation.  相似文献   

12.
Wen X  Yang JQ  Kim PJ  Singh RR 《PloS one》2011,6(10):e26536
Marginal zone B cells (MZB) mount a rapid antibody response, potently activate naïve T cells, and are enriched in autoreactive B cells. MZBs express high levels of CD1d, the restriction element for invariant natural killer T cells (iNKT). Here, we examined the effect of iNKT cells on MZB cell activation and numbers in vitro and in vivo in normal and autoimmune mice. Results show that iNKT cells activate MZBs, but restrict their numbers in vitro and in vivo in normal BALB/c and C57/BL6 mice. iNKT cells do so by increasing the activation-induced cell death and curtailing proliferation of MZB cells, whereas they promote the proliferation of follicular B cells. Sorted iNKT cells can directly execute this function, without help from other immune cells. Such MZB regulation by iNKTs is mediated, at least in part, via CD1d on B cells in a contact-dependent manner, whereas iNKT-induced proliferation of follicular B cells occurs in a contact- and CD1d-independent manner. Finally, we show that iNKT cells reduce ‘autoreactive’ MZB cells in an anti-DNA transgenic model, and limit MZB cell numbers in autoimmune-prone (NZB×NZW)F1 and non-obese diabetic mice, suggesting a potentially new mechanism whereby iNKT cells might regulate pathologic autoimmunity. Differential regulation of follicular B cells versus potentially autoreactive MZBs by iNKT cells has important implications for autoimmune diseases as well as for conditions that require a rapid innate B cell response.  相似文献   

13.
Upon specific interaction with APCs, T cells capture membrane fragments and surface molecules in a process termed trogocytosis. In this study, we demonstrate that human Ag-specific CD8(+) T cells acquire the coinhibitory molecule programmed death ligand 1 (PD-L1) from mature dendritic cells (mDC) and tumor cells in an Ag-specific manner. Immature dendritic cells were less effective in transferring surface molecules onto CD8(+) T cells than mDCs. Interestingly, trogocytosis of PD-L1 requires cell-cell contact and cannot be induced by uptake of soluble proteins obtained from mDC lysates. The transfer process is impaired by inhibition of vacuolar ATPases in T cells as well as by fixation of dendritic cells. Of importance, CD8(+) T cells that acquired PD-L1 complexes were able to induce apoptosis of neighboring programmed death 1-expressing CD8(+) T cells. In summary, our data demonstrate that human CD8(+) T cells take up functionally active PD-L1 from APCs in an Ag-specific fashion, leading to fratricide of programmed death 1-expressing, neighboring T cells. The transfer of functionally active coinhibitory molecules from APCs onto human CD8(+) T cells could have a regulatory role in immune responses.  相似文献   

14.
Acute graft-vs-host disease (GVHD) is influenced by pathways that can enhance or reduce lethality by providing positive or negative signals to donor T cells. To date, the only reported pathway to inhibit GVHD is the CTLA-4:B7 pathway. Because absence of the programmed death-1 (PD-1) pathway has been implicated in a predisposition to autoimmunity and hence a lack of negative signals, the effect of PD-1 pathway blockade on GVHD was explored using several distinct approaches. In each, GVHD lethality was markedly accelerated. Coblockade of CTLA-4 and PD-1 was additive in augmenting GVHD, indicating that these pathways are not fully redundant. Although neither perforin nor Fas ligand expression was required for GVHD enhancement, donor IFN-gamma production was required for optimal GVHD acceleration in the absence of PD-1 ligation. These data indicate that PD-1 ligation down-regulates GVHD through modulation of IFN-gamma production and suggest a novel therapeutic target for inhibiting GVHD lethality.  相似文献   

15.
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.  相似文献   

16.
BackgroundThis study aimed at investigating the feasibility of testing for soluble programmed death-1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in serum samples of glioma patients and to evaluate the diagnostic and prognostic value of these two soluble molecules.MethodsSerum samples collected from 70 glioma patients before surgery were designated as the pre-operative (Pre) group, samples obtained from 90 post-surgery glioblastoma patients were designated as the Post group, and samples from 20 healthy volunteers were used as controls. Peripheral blood sPD-1 and sPD-L1 levels were detected by using ELISA kits and compared among the groups. The associations of these soluble molecule levels with clinicopathological variables and tumour progression were investigated.ResultsAmong the three groups, the Pre group had the highest sPD-1 levels, whereas the median sPD-L1 level was significantly lower in the Post group than in the other two groups. The area under the curve (AUC) of sPD-1 (0.762) for diagnosis was similar to that of sPD-L1 (0.718). Higher serum levels of sPD-1 and sPD-L1 were present in samples of patients with more advanced brain tumours. Kaplan-Meier analysis showed that higher serum levels of sPD-1 (>11.14 pg/mL) and sPD-L1 (>63.03 pg/mL) might predict shorter progression-free survival times of glioma patients.ConclusionsThis study showed that sPD-1 and sPD-L1 might be promising predictive biomarkers for the diagnosis and prognosis of glioma patients.  相似文献   

17.
In an effort to identify immunoregulatory molecules on dendritic cells (DC), we generated and screened for mAbs capable of modulating the T cell stimulatory function of DC. A particularly interesting mAb was mAb DF272. It recognizes monocyte-derived DC, but not blood monocytes or lymphocytes, and has profound immunomodulatory effects on DC. Treatment of DC with intact IgG or Fab of mAb DF272 enhanced their T cell stimulatory capacity. This effect on DC was accompanied by neither an up-regulation of costimulatory molecules such as B7.1 (CD80), B7.2 (CD86), and MHC class II molecules nor by an induction of cytokine production, including IL-1, TNF-alpha, IL-10, and IL-12. Moreover, the well-established inhibitory function of IL-10-treated DC could be reverted with mAb DF272. Even T cells, anergized because of stimulation with IL-10-treated DC, could be reactivated and induced to proliferate upon stimulation with mAb DF272-treated DC. Furthermore, mAb DF272-treated DC favored the induction of a type-1 cytokine response in T cells and inhibited IL-10 production. By using a retrovirus-based cDNA expression library generated from DC, we cloned and sequenced the mAb DF272-defined cell surface receptor and could demonstrate that it is identical with B7-H1 (programmed death-1 ligand), a recently identified new member of the B7 family of costimulatory molecules. Our results thus demonstrate that the mAb DF272-defined surface molecule B7-H1 represents a unique receptor structure on DC that might play a role in the induction and maintenance of T cell anergy.  相似文献   

18.
CD8(+) T cells become exhausted, inducing cell surface protein programmed cell death-1 (PD-1) as chronic virus diseases or tumors progress, but underlying mechanisms of this are unclear. We previously showed that M-CSF is important for developing tolerogenic dendritic cells (DCs) from human CD14(+) monocytes. In this article, we identify M-CSF-derived DCs (M-DCs) after stimulation with IL-10 as myeloid-derived suppressor cells with additional tolerogenic activities to CD8(+) T cells. IL-10 increased PD-1 ligand expression on M-DC, and IL-10-stimulated M-DCs (M-DC/IL-10) induced expression of PD-1 on, and apoptosis of, CD8(+) T cells and phagocytosed CD8(+) T cells. Enhanced phagocytic activity of M-DC/IL-10 required IFN-γ, which further increased PD-1 ligand and PD-2 ligand expression on M-DC/IL-10. IFN-γ-stimulated M-DC/IL-10 cells were phenotypically macrophage-like cells with little or no expression of CD86, a costimulatory molecule, but with high expression levels of CD14, CD200R, and CD80. No phagocytic activity was detected with GM-CSF-derived DCs. We propose that phagocytosis by IFN-γ-stimulated M-DC/IL-10 cells, which may be DCs or, alternatively, a unique subset of macrophages, may be a mechanism by which IFN-γ-producing CD8(+) T cells are tolerized after type 1 immune responses to chronic virus or tumor, and that IFN-γ links effector CD8(+) T cells to their phagocytic clearance.  相似文献   

19.
Invariant NKT (iNKT) cells are glycolipid-reactive lymphocytes with anti-microbial properties. Toll-like receptor (TLR)-primed antigen-presenting cells are known to activate iNKT cells, however, the expression and function of TLRs in iNKT cells remain largely unknown. Here, we show that TCR-activation of murine iNKT cells by α-GalactosylCeramide (α-GalCer) or anti-CD3 antibodies can result in increased expression of TLR genes. TLR3, 5 and 9-mediated costimulation of TCR-preactivated iNKT cells resulted in enhancement of iNKT cell activation, as determined by their cytokine production. Expression of TLR3 and 9 at protein level was also confirmed in TCR-activated iNKT cells. Furthermore, TCR-preactivation followed by TLR9-costimulation of iNKT cells increased their ability to induce maturation of dendritic cells. Thus, our findings show that iNKT cells can up-regulate their TLR expression upon TCR activation and a subsequent TLR-signaling in these cells can lead to their enhanced activation, suggesting a new possible mode of iNKT cell activation.  相似文献   

20.
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays important physiological roles in several mammalian tissues and cells, yet the details remain ambiguous. In this study, we first examined the effects of 2-arachidonoylglycerol on the motility of human natural killer cells. We found that 2-arachidonoylglycerol induces the migration of KHYG-1 cells (a natural killer leukemia cell line) and human peripheral blood natural killer cells. The migration of natural killer cells induced by 2-arachidonoylglycerol was abolished by treating the cells with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the 2-arachidonoylglycerol-induced migration. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, did not induce the migration. Delta9-tetrahydrocannabinol, a major psychoactive constituent of marijuana, also failed to induce the migration; instead, the addition of delta9-tetrahydrocannabinol together with 2-arachidonoylglycerol abolished the migration induced by 2-arachidonoylglycerol. It is conceivable that the endogenous ligand for the cannabinoid receptor, that is, 2-arachidonoylglycerol, affects natural killer cell functions such as migration, thereby contributing to the host-defense mechanism against infectious viruses and tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号