首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serine protease prostasin is a negative regulator of lipopolysaccharide-induced inflammation and has a role in the regulation of cellular immunity. Prostasin expression in cancer cells inhibits migration and metastasis, and reduces epithelial–mesenchymal transition. Programmed death-ligand 1 (PD-L1) is a negative regulator of the immune response and its expression in cancer cells interferes with immune surveillance. The aim of the present study was to investigate if prostasin regulates PD-L1 expression. We established sublines overexpressing various forms of prostasin as well as a subline deficient for the prostasin gene from the Calu-3 human lung cancer cells. We report here that PD-L1 expression induced by interferon-γ (IFNγ) is further enhanced in cells overexpressing the wildtype membrane-anchored prostasin. The PD-L1 protein was localized on the cell surface and released into the culture medium in extracellular vesicles (EVs) with the protease-active prostasin. The epidermal growth factor-epidermal growth factor receptor (EGF-EGFR), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) participated in the prostasin-mediated up-regulation of PD-L1 expression. A Gene Set Enrichment Analysis (GSEA) of patient lung tumors in The Cancer Genome Atlas (TCGA) database revealed that prostasin and PD-L1 regulate common signaling pathways during tumorigenesis and tumor progression.  相似文献   

2.
3.
Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.  相似文献   

4.
Expression of programmed death-ligand 1 (PD-L1) in tumor cells such as lung cancer cells plays an important role in mechanisms underlying evasion of an immune check point system. Lung cancer tissue with increased deposition of extracellular matrix is much stiffer than normal lung tissue. There is emerging evidence that the matrix stiffness of cancer tissue affects the phenotypes and properties of cancer cells. Nevertheless, the effects of substrate rigidity on expression of PD-L1 in lung cancer cells remain elusive. We evaluated the effects of substrate stiffness on PD-L1 expression in HCC827 lung adenocarcinoma cells by using polyacrylamide hydrogels with stiffnesses of 2 and 25?kPa. Expression of PD-L1 protein was higher on the stiffer substrates (25?kPa gel and plastic dish) than on the soft 2?kPa gel. PD-L1 expression was reduced by detachment of cells adhering to the substrate. Interferon-γ enhanced expression of PD-L1 protein cultured on stiff (25?kPa gel and plastic dishes) and soft (2?kPa gel) substrates and in the cell adhesion-free condition. As the stiffness of substrates increased, formation of actin stress fiber and cell growth were enhanced. Transfection of the cells with short interfering RNA for PD-L1 inhibited cell growth without affecting stress fiber formation. Treatment of the cells with cytochalasin D, an inhibitor of actin polymerization, significantly reduced PD-L1 protein levels. Taken together, a stiff substrate enhanced PD-L1 expression via actin-dependent mechanisms in lung cancer cells. It is suggested that stiffness as a tumor environment regulates PD-L1 expression, which leads to evasion of the immune system and tumor growth.  相似文献   

5.
6.

Background

Fungi are important pathogens but challenging to enumerate using next-generation sequencing because of low absolute abundance in many samples and high levels of fungal DNA from contaminating sources.

Results

Here, we analyze fungal lineages present in the human airway using an improved method for contamination filtering. We use DNA quantification data, which are routinely acquired during DNA library preparation, to annotate output sequence data, and improve the identification and filtering of contaminants. We compare fungal communities and bacterial communities from healthy subjects, HIV+ subjects, and lung transplant recipients, providing a gradient of increasing lung impairment for comparison. We use deep sequencing to characterize ribosomal rRNA gene segments from fungi and bacteria in DNA extracted from bronchiolar lavage samples and oropharyngeal wash. Comparison to clinical culture data documents improved detection after applying the filtering procedure.

Conclusions

We find increased representation of medically relevant organisms, including Candida, Cryptococcus, and Aspergillus, in subjects with increasingly severe pulmonary and immunologic deficits. We analyze covariation of fungal and bacterial taxa, and find that oropharyngeal communities rich in Candida are also rich in mitis group Streptococci, a community pattern associated with pathogenic polymicrobial biofilms. Thus, using this approach, it is possible to characterize fungal communities in the human respiratory tract more accurately and explore their interactions with bacterial communities in health and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0487-y) contains supplementary material, which is available to authorized users.  相似文献   

7.
Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell based immunity. Anti-PD-L1/PD-1 immunotherapy benefits those patients receiving platinum-based combinational chemotherapy. However, the underlying mechanism is still largely unknown. In this study, we found that carboplatin could induce PD-L1 expression in NSCLC H292, A549 and H1299 cells in a dose-dependent manner. mRNA sequencing and the subsequent validation assays found that carboplatin significantly induced PVR expression, which is considered as an immuno-adhesion molecule. Mechanistically, PVR knockdown significantly abrogated carboplatin-induced PD-L1 expression. Functionally, knockdown of PVR significantly reversed the CD3+ T cells proliferation inhibition caused by carboplatin increased PD-L1. Moreover, the carboplatin-induced PVR and subsequent up-regulation of PD-L1 might be mediated via the EGFR, PI3K/AKT, and ERK signaling pathways. Immunohistochemical staining results showed that the PD-L1 expression was positively associated with PVR expression in clinical NSCLC samples. Our study reveals a novel regulatory mechanism of PD-L1 expression, provides evidence that carboplatin inhibits tumor immune response by up-regulating PD-L1 expression and explains the rationale for combining platinum-based chemotherapy with PD-L1/PD-1 inhibitors.  相似文献   

8.
9.

Background  

Genomic position (GP) files currently used in next-generation sequencing (NGS) studies are always difficult to manipulate due to their huge size and the lack of appropriate tools to properly manage them. The structure of these flat files is based on representing one line per position that has been covered by at least one aligned read, imposing significant restrictions from a computational performance perspective.  相似文献   

10.
Next-generation sequencing technologies have revolutionized our ability to identify genetic variants, either germline or somatic point mutations, that occur in cancer. Parallelization and miniaturization of DNA sequencing enables massive data throughput and for the first time, large-scale, nucleotide resolution views of cancer genomes can be achieved. Systematic, large-scale sequencing surveys have revealed that the genetic spectrum of mutations in cancers appears to be highly complex with numerous low frequency bystander somatic variations, and a limited number of common, frequently mutated genes. Large sample sizes and deeper resequencing are much needed in resolving clinical and biological relevance of the mutations as well as in detecting somatic variants in heterogeneous samples and cancer cell sub-populations. However, even with the next-generation sequencing technologies, the overwhelming size of the human genome and need for very high fold coverage represents a major challenge for up-scaling cancer genome sequencing projects. Assays to target, capture, enrich or partition disease-specific regions of the genome offer immediate solutions for reducing the complexity of the sequencing libraries. Integration of targeted DNA capture assays and next-generation deep resequencing improves the ability to identify clinically and biologically relevant mutations.  相似文献   

11.
There has been a growing interest in using next-generation sequencing (NGS) to profile extracellular small RNAs from the blood and cerebrospinal fluid (CSF) of patients with neurological diseases, CNS tumors, or traumatic brain injury for biomarker discovery. Small sample volumes and samples with low RNA abundance create challenges for downstream small RNA sequencing assays. Plasma, serum, and CSF contain low amounts of total RNA, of which small RNAs make up a fraction. The purpose of this study was to maximize RNA isolation from RNA-limited samples and apply these methods to profile the miRNA in human CSF by small RNA deep sequencing. We systematically tested RNA isolation efficiency using ten commercially available kits and compared their performance on human plasma samples. We used RiboGreen to quantify total RNA yield and custom TaqMan assays to determine the efficiency of small RNA isolation for each of the kits. We significantly increased the recovery of small RNA by repeating the aqueous extraction during the phenol-chloroform purification in the top performing kits. We subsequently used the methods with the highest small RNA yield to purify RNA from CSF and serum samples from the same individual. We then prepared small RNA sequencing libraries using Illumina’s TruSeq sample preparation kit and sequenced the samples on the HiSeq 2000. Not surprisingly, we found that the miRNA expression profile of CSF is substantially different from that of serum. To our knowledge, this is the first time that the small RNA fraction from CSF has been profiled using next-generation sequencing.  相似文献   

12.
13.
14.
15.
It is generally accepted that cancers result from the aggregation of somatic mutations. The emergence of next-generation sequencing (NGS) technologies during the past half-decade has enabled studies of cancer genomes with high sensitivity and resolution through whole-genome and whole-exome sequencing approaches, among others. This saltatory advance introduces the possibility of assembling multiple cancer genomes for analysis in a cost-effective manner. Analytical approaches are now applied to the detection of a number of somatic genome alterations, including nucleotide substitutions, insertions/deletions, copy number variations, and chromosomal rearrangements. This review provides a thorough introduction to the cancer genomics pipeline as well as a case study of these methods put into practice.  相似文献   

16.
The PD-L1 overexpression is an important event of immune escape and metastasis in triple-negative breast cancer (TNBC), but the molecular mechanism remains to be determined. Interferon gamma (IFNγ) represents a major driving force behind PD-L1 expression in tumor microenvironment, and histone deacetylase 2 (HDAC2) is required for IFN signaling. Here, we investigated the regulation of HDAC2 on the IFNγ-induced PD-L1 expression in TNBC cells. We found the HDAC2 and PD-L1 expression in TNBC was significantly higher than that in non-TNBC, and HDAC2 was positively correlated with PD-L1 expression. HDAC2 promoted PD-L1 induction by upregulating the phosphorylation of JAK1, JAK2, and STAT1, as well as the translocation of STAT1 to the nucleus and the recruitment of STAT1 to the PD-L1 promoter. Meanwhile, HDAC2 was recruited to the PD-L1 promoter by STAT1, and HDAC2 knockout compromised IFNγ-induced upregulation of H3K27, H3K9 acetylation, and the BRD4 recruitment in PD-L1 promoter. In addition, significant inhibition of proliferation, colony formation, migration, and cell cycle of TNBC cells were observed following knockout of HDAC2 in vitro. Furthermore, HDAC2 knockout reduced IFNγ-induced PD-L1 expression, lymphocyte infiltration, and retarded tumor growth and metastasis in the breast cancer mouse models. This study may provide evidence that HDAC2 promotes IFNγ-induced PD-L1 expression, suggesting a way for enhanced antitumor immunity when targeting the HDAC2 in TNBC.Subject terms: Breast cancer, Immune evasion  相似文献   

17.
CRC is a heterogeneous disease due to global molecular alterations, including mismatch-repair-deficient (dMMR) and microsatellite instability-high (MSI-H). Immunotherapy has achieved durable responses in a subset of patients with dMMR-MSI-H metastatic CRC. It has been showed that Loss of ZG16 is highly associated with colorectal cancer. However, whether ZG16 modulates tumor immunity in colorectal cancer is unclear. In this study, we demonstrated that the expression of ZG16 is associated with distant metastasis and lymphatic invasive in colorectal cancer. Besides, ZG16 is negatively correlated to PD-L1 expression in patient with CRC and overexpression of ZG16 blocks PD-L1 expression in colorectal cancer cells. In addition, overexpression of ZG16 promotes NK cells survival and proliferation, which is dependent on NKG2D expression. Our data demonstrate that ZG16 plays a role in modulation of immune response in colorectal cancer. The strong correlation between ZG16 and PD-L1 suggests that ZG16 may serve a biomarker to stratify patient who will benefit from immunotherapy.  相似文献   

18.
19.
Wei X  Ju X  Yi X  Zhu Q  Qu N  Liu T  Chen Y  Jiang H  Yang G  Zhen R  Lan Z  Qi M  Wang J  Yang Y  Chu Y  Li X  Guang Y  Huang J 《PloS one》2011,6(12):e29500

Background

Identification of gene variants plays an important role in research on and diagnosis of genetic diseases. A combination of enrichment of targeted genes and next-generation sequencing (targeted DNA-HiSeq) results in both high efficiency and low cost for targeted sequencing of genes of interest.

Methodology/Principal Findings

To identify mutations associated with genetic diseases, we designed an array-based gene chip to capture all of the exons of 193 genes involved in 103 genetic diseases. To evaluate this technology, we selected 7 samples from seven patients with six different genetic diseases resulting from six disease-causing genes and 100 samples from normal human adults as controls. The data obtained showed that on average, 99.14% of 3,382 exons with more than 30-fold coverage were successfully detected using Targeted DNA-HiSeq technology, and we found six known variants in four disease-causing genes and two novel mutations in two other disease-causing genes (the STS gene for XLI and the FBN1 gene for MFS) as well as one exon deletion mutation in the DMD gene. These results were confirmed in their entirety using either the Sanger sequencing method or real-time PCR.

Conclusions/Significance

Targeted DNA-HiSeq combines next-generation sequencing with the capture of sequences from a relevant subset of high-interest genes. This method was tested by capturing sequences from a DNA library through hybridization to oligonucleotide probes specific for genetic disorder-related genes and was found to show high selectivity, improve the detection of mutations, enabling the discovery of novel variants, and provide additional indel data. Thus, targeted DNA-HiSeq can be used to analyze the gene variant profiles of monogenic diseases with high sensitivity, fidelity, throughput and speed.  相似文献   

20.
Osimertinib, as the third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), is a first-line molecularly targeted drug for non-small cell lung cancer (NSCLC). However, the emergence of therapeutic resistance to osimertinib markedly impairs its efficiency and efficacy, leading to the failure of clinical applications. Novel molecular targets and drugs are urgently needed for reversing osimertinib resistance in NSCLC. Protease-activated receptor 2 (PAR2) that belongs to a subfamily of G protein-coupled receptors can stimulate the transactivation of EGFR to regulate multiple cellular signalling, actively participating in tumour progression. This study firstly discovered that PAR2 expression was notably enhanced when NSCLC cells became resistant to osimertinib. A PAR2 inhibitor facilitated osimertinib to attenuate EGFR transactivation, ERK phosphorylation, EMT and PD-L1 expression which were associated to osimertinib resistance. The combination of the PAR2 inhibitor and osimertinib also notably blocked cell viability, migration, 3D sphere formation and in vivo tumour growth whereas osimertinib itself lost such inhibitory effects in osimertinib-resistant NSCLC cells. Importantly, this reversal effect of PAR2 blockade was uncovered to depend on ERK-mediated EMT and PD-L1, since inhibition of β-arrestin or ERK, which could be modulated by PAR2, sensitized osimertinib to prevent EMT, PD-L1 expression and consequently overcame osimertinib resistance. Thus, this study demonstrated that PAR2 antagonism could limit ERK-mediated EMT and immune checkpoints, consequently attenuating EGFR transactivation and reactivate osimertinib. It suggested that PAR2 may be a novel drug target for osimertinib resistance, and PAR2 inhibition may be a promising strategy candidate for reversing EGFR-TKI resistance in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号