首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (108KB)
  2. Download : Download full-size image
  相似文献   

2.
Living cells contain diverse biopolymers, creating a heterogeneous crowding environment, the impact of which on RNA folding is poorly understood. Here, we have used single-molecule fluorescence resonance energy transfer to monitor tertiary structure formation of the hairpin ribozyme as a model to probe the effects of polyethylene glycol and yeast cell extract as crowding agents. As expected, polyethylene glycol stabilizes the docked, catalytically active state of the ribozyme, in part through excluded volume effects; unexpectedly, we found evidence that it additionally displays soft, non-specific interactions with the ribozyme. Yeast extract has a profound effect on folding at protein concentrations 1000-fold lower than found intracellularly, suggesting the dominance of specific interactions over volume exclusion. Gel shift assays and affinity pull-down followed by mass spectrometry identified numerous non-canonical RNA-binding proteins that stabilize ribozyme folding; the apparent chaperoning activity of these ubiquitous proteins significantly compensates for the low-counterion environment of the cell.  相似文献   

3.
Some ingredients from herbal medicine can significantly affect the activity of CYP2D6, thus leading to serious interactions between herbs and drugs. Quercetin and hyperoside are active ingredients widely found in vegetables, fruits, and herbal medicines. Quercetin and hyperoside have many biological activities. In this work, the characteristic bindings of CYP2D6 with quercetin/hyperoside are revealed by multi-spectroscopy analysis, molecular docking, and molecular dynamics simulations. The fluorescence of CYP2D6 is statically quenched by quercetin and hyperoside. The binding constant (Ka) values of CYP2D6–quercetin/hyperoside range from 104 L mol−1, which indicates that these two flavonoids bind moderately to CYP2D6. Meanwhile, quercetin has a stronger quenching ability to CYP2D6 than that of hyperoside. The secondary structure of CYP2D6 is obviously changed by binding with quercetin/hyperoside. The docking results reveal that the quercetin/hyperoside enters the active site of CYP2D6 near heme and binds to CYP2D6 by hydrogen bonds and van der Waals forces. The molecular dynamics simulation results indicate that the binding of quercetin/hyperoside can stabilize the two complexes, enhance the flexibility of CYP2D6 backbone atoms, and make a more unfolded and looser structure of CYP2D6.  相似文献   

4.
Nuclear replication of cytomegalovirus relies on elaborate mechanisms of nucleocytoplasmic egress of viral particles. Thus, the role of two essential and conserved viral nuclear egress proteins, pUL50 and pUL53, is pivotal. pUL50 and pUL53 heterodimerize and form a core nuclear egress complex (NEC), which is anchored to the inner nuclear membrane and provides a scaffold for the assembly of a multimeric viral-cellular NEC. Here, we report the crystal structure of the pUL50-pUL53 heterodimer (amino acids 1–175 and 50–292, respectively) at 2.44 Å resolution. Both proteins adopt a globular fold with mixed α and β secondary structure elements. pUL53-specific features include a zinc-binding site and a hook-like N-terminal extension, the latter representing a hallmark element of the pUL50-pUL53 interaction. The hook-like extension (amino acids 59–87) embraces pUL50 and contributes 1510 Å2 to the total interface area (1880 Å2). The pUL50 structure overall resembles the recently published NMR structure of the murine cytomegalovirus homolog pM50 but reveals a considerable repositioning of the very C-terminal α-helix of pUL50 upon pUL53 binding. pUL53 shows structural resemblance with the GHKL domain of bacterial sensory histidine kinases. A close examination of the crystal structure indicates partial assembly of pUL50-pUL53 heterodimers to hexameric ring-like structures possibly providing additional scaffolding opportunities for NEC. In combination, the structural information on pUL50-pUL53 considerably improves our understanding of the mechanism of HCMV nuclear egress. It may also accelerate the validation of the NEC as a unique target for developing a novel type of antiviral drug and improved options of broad-spectrum antiherpesviral therapy.  相似文献   

5.
  1. Download : Download high-res image (351KB)
  2. Download : Download full-size image
  相似文献   

6.
硫化氢(H_2S)作为继一氧化氮和一氧化碳后的第三种气体信号分子,日渐受到人们的关注,检测技术的发展为研究提供了帮助。H_2S在人体各系统中发挥着重要的作用,如心血管系统、神经系统、呼吸系统等,其与高血压、动脉粥样硬化、神经退行性疾病、哮喘等疾病的发生发展有着密切的联系,具有作为疾病治疗药物的潜能。对于H_2S作用于靶分子机制的阐述深化了小分子物质调控大分子功能的研究,提供了对多种疾病进行干预的新手段。  相似文献   

7.
We investigate the extent to which the conformational fluctuations of proteins in solution reflect the conformational changes that they undergo when they form binary protein-protein complexes. To do this, we study a set of 41 proteins that form such complexes and whose three-dimensional structures are known, both bound in the complex and unbound. We carry out molecular dynamics simulations of each protein, starting from the unbound structure, and analyze the resulting conformational fluctuations in trajectories of 5 ns in length, comparing with the structure in the complex. It is found that fluctuations take some parts of the molecules into regions of conformational space close to the bound state (or give information about it), but at no point in the simulation does each protein as whole sample the complete bound state. Subsequent use of conformations from a clustered MD ensemble in rigid-body docking is nevertheless partially successful when compared to docking the unbound conformations, as long as the unbound conformations are themselves included with the MD conformations and the whole globally rescored. For one key example where sub-domain motion is present, a ribonuclease inhibitor, principal components analysis of the MD was applied and was also able to produce conformations for docking that gave enhanced results compared to the unbound. The most significant finding is that core interface residues show a tendency to be less mobile (by size of fluctuation or entropy) than the rest of the surface even when the other binding partner is absent, and conversely the peripheral interface residues are more mobile. This surprising result, consistent across up to 40 of the 41 proteins, suggests different roles for these regions in protein recognition and binding, and suggests ways that docking algorithms could be improved by treating these regions differently in the docking process.  相似文献   

8.
以分子对接(docking)方法研究人白介素6受体胞外区配基结合功能域“WSXWS”区氨基酸残基定点突变对受体与配基人白介素6结合时的相互作用能量、分子间相互作用的影响,从分子力学、分子动态学分析了人白介素6受体胞外区功能域关键氨基酸残基在受体与配基结合中的构象变化以及与人白介素6间的相互作用.  相似文献   

9.
人二氢乳清酸脱氢酶(human dihydroorotate dehydrogenase, hDHODH)是催化嘧啶从头合成途径的一个关键酶。近年来,多种研究表明,抑制该酶可缓解类风湿性关节炎的症状。但该酶的抑制剂甚少,寻找该酶的高效抑制剂具有重要意义。本研究利用PCR技术扩增hDHODH基因,构建重组质粒pET-19b-hDHODH,并在大肠杆菌(Escherichia coli, E.coli ) BL21(DE3)中表达,获得可溶性蛋白质。用Ni2+-NTA亲和层析柱对蛋白质进行纯化,获得较高(90%)纯度的hDHODH蛋白,将蛋白质与抑制剂3-(5-乙硫基)-1H-1, 2, 4-三氮唑-3-)苯甲酸和底物DHO混合孵育。用Hampton试剂盒初筛晶体并用棋盘法进行优化,获得晶形完美、衍射能力很强的hDHODH蛋白复合物单晶。用X射线衍射晶体,用CCP4、Coot软件解析结构,获得hDHODH蛋白复合物晶体结构。从解析的结构中可以看出,抑制剂与蛋白质的吻合度非常高,且抑制剂通过亲水的羧基端与蛋白质356位和147位的酪氨酸形成氢键网络。抑制剂的5元环与蛋白质359位的亮氨酸和360位的苏氨酸相互作用,使抑制剂与蛋白质牢固结合。该复合物晶体结构的顺利解析,将为开发新型特异性抗类风湿性关节炎药物提供重要基础。  相似文献   

10.
Many Gram-positive bacteria produce lantibiotics, genetically encoded and posttranslationally modified peptide antibiotics, which inhibit the growth of other Gram-positive bacteria. To protect themselves against their own lantibiotics these bacteria express a variety of immunity proteins including the LanI lipoproteins. The structural and mechanistic basis for LanI-mediated lantibiotic immunity is not yet understood. Lactococcus lactis produces the lantibiotic nisin, which is widely used as a food preservative. Its LanI protein NisI provides immunity against nisin but not against structurally very similar lantibiotics from other species such as subtilin from Bacillus subtilis. To understand the structural basis for LanI-mediated immunity and their specificity we investigated the structure of NisI. We found that NisI is a two-domain protein. Surprisingly, each of the two NisI domains has the same structure as the LanI protein from B. subtilis, SpaI, despite the lack of significant sequence homology. The two NisI domains and SpaI differ strongly in their surface properties and function. Additionally, SpaI-mediated lantibiotic immunity depends on the presence of a basic unstructured N-terminal region that tethers SpaI to the membrane. Such a region is absent from NisI. Instead, the N-terminal domain of NisI interacts with membranes but not with nisin. In contrast, the C-terminal domain specifically binds nisin and modulates the membrane affinity of the N-terminal domain. Thus, our results reveal an unexpected structural relationship between NisI and SpaI and shed light on the structural basis for LanI mediated lantibiotic immunity.  相似文献   

11.
12.
Alok Sharma  K. Sekar  M. Vijayan 《Proteins》2009,77(4):760-777
Molecular dynamics simulations have been carried out on all the jacalin–carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X‐ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin–carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate‐binding residues are consistent with the known thermodynamic parameters of jacalin–carbohydrate interactions. The simulations, along with X‐ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin–carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3′ acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.  相似文献   

14.
We have performed simulated tempering molecular dynamics simulations to study the thermodynamics of the headpiece of the Huntingtin (Htt) protein (N17Htt). With converged sampling, we found this peptide is highly helical, as previously proposed. Interestingly, this peptide is also found to adopt two different and seemingly stable states. The region from residue 4 (L) to residue 9 (K) has a strong helicity from our simulations, which is supported by experimental studies. However, contrary to what was initially proposed, we have found that simulations predict the most populated state as a two-helix bundle rather than a single straight helix, although a significant percentage of structures do still adopt a single linear helix. The fact that Htt aggregation is nucleation dependent infers the importance of a critical transition. It has been shown that N17Htt is involved in this rate-limiting step. In this study, we propose two possible mechanisms for this nucleating event stemming from the transition between two-helix bundle state and single-helix state for N17Htt and the experimentally observed interactions between the N17Htt and polyQ domains. More strikingly, an extensive hydrophobic surface area is found to be exposed to solvent in the dominant monomeric state of N17Htt. We propose the most fundamental role played by N17Htt would be initializing the dimerization and pulling the polyQ chains into adequate spatial proximity for the nucleation event to proceed.  相似文献   

15.
The circadian control of cellular processes in cyanobacteria is regulated by a posttranslational oscillator formed by three Kai proteins. During the oscillator cycle, KaiA serves to promote autophosphorylation of KaiC while KaiB counteracts this effect. Here, we present a crystallographic structure of the wild-type Synechococcus elongatus KaiB and a cryo-electron microscopy (cryoEM) structure of a KaiBC complex. The crystal structure shows the expected dimer core structure and significant conformational variations of the KaiB C-terminal region, which is functionally important in maintaining rhythmicity. The KaiBC sample was formed with a C-terminally truncated form of KaiC, KaiC-Δ489, which is persistently phosphorylated. The KaiB–KaiC-Δ489 structure reveals that the KaiC hexamer can bind six monomers of KaiB, which form a continuous ring of density in the KaiBC complex. We performed cryoEM-guided molecular dynamics flexible fitting simulations with crystal structures of KaiB and KaiC to probe the KaiBC protein–protein interface. This analysis indicated a favorable binding mode for the KaiB monomer on the CII end of KaiC, involving two adjacent KaiC subunits and spanning an ATP binding cleft. A KaiC mutation, R468C, which has been shown to affect the affinity of KaiB for KaiC and lengthen the period in a bioluminescence rhythm assay, is found within the middle of the predicted KaiBC interface. The proposed KaiB binding mode blocks access to the ATP binding cleft in the CII ring of KaiC, which provides insight into how KaiB might influence the phosphorylation status of KaiC.  相似文献   

16.
17.
Homologs of the phosphatidylinositol‐4‐phosphate‐5‐kinase (PIP5K), which controls a multitude of essential cellular functions, contain a 8 aa insert in a conserved region that is specific for the Saccharomycetaceae family of fungi. Using structures of human PIP4K proteins as templates, structural models were generated of the Saccharomyces cerevisiae and human PIP5K proteins. In the modeled S. cerevisiae PIP5K, the 8 aa insert forms a surface exposed loop, present on the same face of the protein as the activation loop of the kinase domain. Electrostatic potential analysis indicates that the residues from 8 aa conserved loop form a highly positively charged surface patch, which through electrostatic interaction with the anionic portions of phospholipid head groups, is expected to play a role in the membrane interaction of the yeast PIP5K. To unravel this prediction, molecular dynamics (MD) simulations were carried out to examine the binding interaction of PIP5K, either containing or lacking the conserved signature insert, with two different membrane lipid bilayers. The results from MD studies provide insights concerning the mechanistic of interaction of PIP5K with lipid bilayer, and support the contention that the identified 8 aa conserved insert in fungal PIP5K plays an important role in the binding of this protein with membrane surface. Proteins 2017; 85:1454–1467. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/β1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2–P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2–5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2–3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes.  相似文献   

19.
Despite recent progress in our understanding of the numerous functions of individual subunits of eukaryotic translation initiation factor (eIF) 3, little is known on the molecular level. Using NMR spectroscopy, we determined the first solution structure of an interaction between eIF3 subunits. We revealed that a conserved tryptophan residue in the human eIF3j N-terminal acidic motif (NTA) is held in the helix α1 and loop 5 hydrophobic pocket of the human eIF3b RNA recognition motif (RRM). Mutating the corresponding “pocket” residues in its yeast orthologue reduces cellular growth rate, eliminates eIF3j/HCR1 association with eIF3b/PRT1 in vitro and in vivo, affects 40S occupancy of eIF3, and produces a leaky scanning defect indicative of a deregulation of the AUG selection process. Unexpectedly, we found that the N-terminal half of eIF3j/HCR1 containing the NTA is indispensable and sufficient for wild-type growth of yeast cells. Furthermore, we demonstrate that deletion of either j/HCR1 or its N-terminal half only, or mutation of the key tryptophan residues results in the severe leaky scanning phenotype partially suppressible by overexpressed eIF1A, which is thought to stabilize properly formed preinitiation complexes at the correct start codon. These findings indicate that eIF3j/HCR1 remains associated with the scanning preinitiation complexes and does not dissociate from the small ribosomal subunit upon mRNA recruitment, as previously believed. Finally, we provide further support for earlier mapping of the ribosomal binding site for human eIF3j by identifying specific interactions of eIF3j/HCR1 with small ribosomal proteins RPS2 and RPS23 located in the vicinity of the mRNA entry channel. Taken together, we propose that eIF3j/HCR1 closely cooperates with the eIF3b/PRT1 RRM and eIF1A on the ribosome to ensure proper formation of the scanning-arrested conformation required for stringent AUG recognition.  相似文献   

20.
Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号