首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Agrobacterium tumefaciens is a Gram‐negative soil‐borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti‐Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo‐tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso‐diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo‐tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease. Proteins 2014; 82:1869–1883. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
C. glutamicum meso-diaminopimelate dehydrogenase is an enzyme of the L-lysine biosynthetic pathway in bacteria. The binding of NADPH and diaminopimelate to the recombinant, overexpressed enzyme has been analyzed using hydrogen/deuterium exchange and electrospray ionization/mass spectrometry. NADPH binding reduces the extent of deuterium exchange, as does the binding of diaminopimelate. Pepsin digestion of the deuterated enzyme and enzyme-substrate complexes coupled with liquid chromatography/mass spectrometry have allowed the identification of eight peptides whose deuterium exchange slows considerably upon the binding of the substrates. These peptides represent regions known or thought to bind NADPH and diaminopimelate. One of these peptides is located at the interdomain hinge region and is proposed to be exchangeable in the "open," catalytically inactive, conformation but nonexchangeable in the "closed," catalytically active conformation formed after NADPH and diaminopimelate binding and domain closure. Furthermore, the dimerization region has been localized by this method, and this study provides an example of detecting protein-protein interface regions using hydrogen/deuterium exchange and electrospray ionization.  相似文献   

3.
4.
去垢剂在膜蛋白的提取纯化过程中起到必要的作用,对膜蛋白的聚合状态、结晶条件以及理化性质等方面都有较大影响.分析超速离心技术(analytical ultracentrifuge,AUC)通过测定溶液中膜蛋白-去垢剂复合物在离心场中的沉降运动轨迹,可以分析获得其沉降系数、摩尔质量、流体力学半径、结合常数等水力学和热力学性质,进而判断膜蛋白-去垢剂复合物的均一性及聚合状态.本文以嗜热菌来源的ATP结合转运蛋白(ABC transporter)TmrAB作为研究对象,利用分析超速离心技术结合分子排阻层析和冷冻电镜负染技术,研究其均一性、聚合状态以及去垢剂与膜蛋白的摩尔比.结果显示,在8倍临界胶束浓度(critical micelle concentration,CMC)的DDM条件下,TmrAB性质均一,并以异二聚体的单体形式存在,DDM与Tmr AB的摩尔比为116∶1.本研究表明,分析超速离心技术是一种测定膜蛋白分子质量、研究膜蛋白聚合状态的可靠手段.  相似文献   

5.
Ion-pair reverse-phase high-performance liquid chromatography is presented as a versatile platform for the rapid analysis of nucleic acid modification reactions in a high-throughput manner. This system allows both sensitive and nonradioactive assays to be developed for a variety of nucleic acid modification reactions. Examples presented here include assays for telomerase, uracil DNA glycosylase, polynucleotide kinase, T4 DNA ligase, C5-DNA methyltransferases, and the mismatch endonuclease CEL I. However, this approach is not confined to these reactions. Indeed the ability to perform a variety of nonradioactive assays with throughput times of 10 min per sample in conjunction with automated data analysis software represents a significant improvement in analytical and preparative nucleic acid enzymology.  相似文献   

6.
7.
The antibiotic alaremycin has a structure that resembles that of 5-aminolevulinic acid (ALA), a universal precursor of porphyrins, and inhibits porphyrin biosynthesis. Genome sequencing of the alaremycin-producing bacterial strain and enzymatic analysis revealed that the first step of alaremcyin biosynthesis is catalysed by the enzyme, AlmA, which exhibits a high degree of similarity to 5-aminolevulinate synthase (ALAS) expressed by animals, protozoa, fungi, and α-proteobacteria. Site-directed mutagenesis of AlmA revealed that the substitution of two amino acids residues around the substrate binding pocket transformed its substrate specificity from that of alaremycin precursor synthesis to ALA synthesis. To estimate the evolutionary trajectory of AlmA and ALAS, we performed an ancestral sequence reconstitution analysis based on a phylogenetic tree of AlmA and ALAS. The reconstructed common ancestral enzyme of AlmA and ALAS exhibited alaremycin precursor synthetic activity, rather than ALA synthetic activity. These results suggest that ALAS evolved from an AlmA-like enzyme. We propose a new evolutionary hypothesis in which a non-essential secondary metabolic enzyme acts as an ‘evolutionary seed’ to generate an essential primary metabolic enzyme.  相似文献   

8.
9.
The human complement Factor H–related 5 protein (FHR5) antagonizes the main circulating complement regulator Factor H, resulting in the deregulation of complement activation. FHR5 normally contains nine short complement regulator (SCR) domains, but a FHR5 mutant has been identified with a duplicated N-terminal SCR-1/2 domain pair that causes CFHR5 nephropathy. To understand how this duplication causes disease, we characterized the solution structure of native FHR5 by analytical ultracentrifugation and small-angle X-ray scattering. Sedimentation velocity and X-ray scattering indicated that FHR5 was dimeric, with a radius of gyration (Rg) of 5.5 ± 0.2 nm and a maximum protein length of 20 nm for its 18 domains. This result indicated that FHR5 was even more compact than the main regulator Factor H, which showed an overall length of 26–29 nm for its 20 SCR domains. Atomistic modeling for FHR5 generated a library of 250,000 physically realistic trial arrangements of SCR domains for scattering curve fits. Only compact domain structures in this library fit well to the scattering data, and these structures readily accommodated the extra SCR-1/2 domain pair present in CFHR5 nephropathy. This model indicated that mutant FHR5 can form oligomers that possess additional binding sites for C3b in FHR5. We conclude that the deregulation of complement regulation by the FHR5 mutant can be rationalized by the enhanced binding of FHR5 oligomers to C3b deposited on host cell surfaces. Our FHR5 structures thus explained key features of the mechanism and pathology of CFHR5 nephropathy.  相似文献   

10.
Liver intestine (LI)-cadherin is a member of the cadherin superfamily, which encompasses a group of Ca2+-dependent cell-adhesion proteins. The expression of LI-cadherin is observed on various types of cells in the human body, such as normal small intestine and colon cells, and gastric cancer cells. Because its expression is not observed on normal gastric cells, LI-cadherin is a promising target for gastric cancer imaging. However, because the cell adhesion mechanism of LI-cadherin has remained unknown, rational design of therapeutic molecules targeting this cadherin has been hampered. Here, we have studied the homodimerization mechanism of LI-cadherin. We report the crystal structure of the LI-cadherin homodimer containing its first four extracellular cadherin repeats (EC1-4). The EC1-4 homodimer exhibited a unique architecture different from that of other cadherins reported so far, driven by the interactions between EC2 of one protein chain and EC4 of the second protein chain. The crystal structure also revealed that LI-cadherin possesses a noncanonical calcium ion–free linker between the EC2 and EC3 domains. Various biochemical techniques and molecular dynamics simulations were employed to elucidate the mechanism of homodimerization. We also showed that the formation of the homodimer observed in the crystal structure is necessary for LI-cadherin–dependent cell adhesion by performing cell aggregation assays. Taken together, our data provide structural insights necessary to advance the use of LI-cadherin as a target for imaging gastric cancer.  相似文献   

11.
The chromosome of the pathogenic Gram-positive bacterium Streptococcus pneumoniae contains between six to 10 operons encoding toxin-antitoxin systems (TAS). TAS are widespread and redundant in bacteria and archaea and their role, albeit still obscure, may be related to important aspects of bacteria lifestyle like response to stress. One of the most abundant TAS is the relBE family, being present in the chromosome of many bacteria and archaea. Because of the high rates of morbility and mortality caused by S. pneumoniae, it has been interesting to gain knowledge on the pneumococcal TAS, among them the RelBE2Spn proteins. Here, we have analyzed the DNA binding capacity of the RelB2Spn antitoxin and the RelB2Spn-RelE2Spn proteins by band-shift assays. Thus, a DNA region encompassing the operator region of the proteins was identified. In addition, we have used analytical ultracentrifugation and native mass spectrometry to measure the oligomerization state of the antitoxin alone and the RelBE2Spn complex in solution bound or unbound to its DNA substrate. Using native mass spectrometry allowed us to unambiguously determine the stoichiometry of the RelB2Spn and of the RelBE2Spn complex alone or associated to its DNA target.  相似文献   

12.
分析超速离心技术是一种通过检测分子在离心场作用下的沉降行为,分析获得其沉降系数、扩散系数、流体力学半径、摩尔质量、结合常数等水力学和热力学性质的方法,被广泛应用于蛋白质分子溶液性质的研究中.本文利用分析超速离心技术研究了拟南芥Sn RK2.6(sucrose non-fermenting1-related protein kinase 2.6)末端一段多聚酸性氨基酸序列对其溶液性质的影响,并将多聚酸性氨基酸序列Sn RK2.6(333~362)及人源PDI(protein disulfide isomerase)(441~491)连接至拟南芥PYL10(PYR like protein 10)分子末端进行分析,同时结合分子排阻层析和静态光散射技术,研究了上述蛋白质分子的分子质量和聚合状态.结果表明,多聚酸性氨基酸序列可以引起蛋白质分子轴长比增加,在溶液中运动时摩擦系数增加,水合半径明显增大,分子排阻层析洗脱体积明显变小.  相似文献   

13.
In tRNA maturation, CCA-addition by tRNA nucleotidyltransferase is a unique and highly accurate reaction. While the mechanism of nucleotide selection and polymerization is well understood, it remains a mystery why bacterial and eukaryotic enzymes exhibit an unexpected and surprisingly low tRNA substrate affinity while they efficiently catalyze the CCA-addition. To get insights into the evolution of this high-fidelity RNA synthesis, the reconstruction and characterization of ancestral enzymes is a versatile tool. Here, we investigate a reconstructed candidate of a 2 billion years old CCA-adding enzyme from Gammaproteobacteria and compare it to the corresponding modern enzyme of Escherichia coli. We show that the ancestral candidate catalyzes an error-free CCA-addition, but has a much higher tRNA affinity compared with the extant enzyme. The consequence of this increased substrate binding is an enhanced reverse reaction, where the enzyme removes the CCA end from the mature tRNA. As a result, the ancestral candidate exhibits a lower catalytic efficiency in vitro as well as in vivo. Furthermore, the efficient tRNA interaction leads to a processive polymerization, while the extant enzyme catalyzes nucleotide addition in a distributive way. Thus, the modern enzymes increased their polymerization efficiency by lowering the binding affinity to tRNA, so that CCA synthesis is efficiently promoted due to a reduced reverse reaction. Hence, the puzzling and at a first glance contradicting and detrimental weak substrate interaction represents a distinct activity enhancement in the evolution of CCA-adding enzymes.  相似文献   

14.
SH3 domains are small, modular domains that are found in many proteins, especially signal transduction proteins such as tyrosine kinases. While much is known about the sequences and tertiary structures of SH3 domains, far less is known about their solution dynamics. A slow, partial unfolding event that occurs under physiological conditions was previously identified in the Hck SH3 domain using hydrogen exchange (HX) mass spectrometry (MS). To determine if this unfolding was unique to Hck SH3, HX MS was used to analyze 11 other SH3 domains: seven SH3 domains from Src-family kinases and five SH3 domains from various proteins. A wide variety of unfolding rates were found, with unfolding half-lives ranging from 1s to 1h. The Lyn and alpha-spectrin SH3 domains exhibited slow, partial unfolding in beta strands D and E and part of the RT-loop. Hck SH3 also underwent partial unfolding in the same region, implying that a unique feature in this area of the domains is responsible for the partial unfolding. Partial unfolding was, however, not a function of sequence conservation. Although the Fyn and Yes SH3 domains are very similar to Hck SH3 in sequence, they exhibited no evidence of partial unfolding. Overall, the results suggest that while the tertiary structure of SH3 domains is highly conserved, the dynamics of SH3 domains are variable.  相似文献   

15.
The analytical ultracentrifuge (AUC) is a powerful biophysical tool that allows us to record macromolecular sedimentation profiles during high speed centrifugation. When properly planned and executed, an AUC sedimentation velocity or sedimentation equilibrium experiment can reveal a great deal about a protein in regards to size and shape, sample purity, sedimentation coefficient, oligomerization states and protein-protein interactions.This technique, however, requires a rigorous level of technical attention. Sample cells hold a sectored center piece sandwiched between two window assemblies. They are sealed with a torque pressure of around 120-140 in/lbs. Reference buffer and sample are loaded into the centerpiece sectors and then after sealing, the cells are precisely aligned into a titanium rotor so that the optical detection systems scan both sample and reference buffer in the same radial path midline through each centerpiece sector while rotating at speeds of up to 60, 000 rpm and under very high vacuumNot only is proper sample cell assembly critical, sample cell components are very expensive and must be properly cared for to ensure they are in optimum working condition in order to avoid leaks and breakage during experiments. Handle windows carefully, for even the slightest crack or scratch can lead to breakage in the centrifuge. The contact between centerpiece and windows must be as tight as possible; i.e. no Newton s rings should be visible after torque pressure is applied. Dust, lint, scratches and oils on either the windows or the centerpiece all compromise this contact and can very easily lead to leaking of solutions from one sector to another or leaking out of the centerpiece all together. Not only are precious samples lost, leaking of solutions during an experiment will cause an imbalance of pressure in the cell that often leads to broken windows and centerpieces. In addition, plug gaskets and housing plugs must be securely in place to avoid solutions being pulled out of the centerpiece sector through the loading holes by the high vacuum in the centrifuge chamber. Window liners and gaskets must be free of breaks and cracks that could cause movement resulting in broken windows.This video will demonstrate our procedures of sample cell assembly, torque, loading and rotor alignment to help minimize component damage, solution leaking and breakage during the perfect AUC experiment.  相似文献   

16.
NMR studies of the binding of a substrate to an inactive HIV-1 protease construct, containing an active site mutation PR(D25N), are reported. Substrate titration measurements monitored by HSQC spectra and a (15)N-edited NOESY experiment show that the chromogenic substrate analog of the capsid/p2 cleavage site binds to PR(D25N) with an equilibrium dissociation constant, K(D), of 0.27 +/- 0.05 mM, and upper limits of the association and dissociation rate constants, 2 x 10(4) M(-1)s(-1) and 10 s(-1), respectively, at 20 degrees C, pH 5.8. This association rate constant is not in the diffusion limit, suggesting that association is controlled by a rare event, such as opening of the protease flaps. Analysis of (15)N relaxation experiments reveals a slight reduction of S(2) values in the flap region, indicating a small increase in the amplitude of internal motion on the sub-nsec timescale. In addition, several residues in the flap region are mobile on the conformational exchange timescale, msec-microsec. Flap dynamics of the protease-substrate complex are compared with those of protease-inhibitor complexes, and the implications of these results for substrate-binding models are discussed.  相似文献   

17.
The proposed kinetic folding mechanism of the alpha-subunit of tryptophan synthase (alphaTS), a TIM barrel protein, displays multiple unfolded and intermediate forms which fold through four parallel pathways to reach the native state. To obtain insight into the secondary structure that stabilizes a set of late, highly populated kinetic intermediates, the refolding of urea-denatured alphaTS from Escherichia coli was monitored by pulse-quench hydrogen exchange mass spectrometry. Following dilution from 8 M urea, the protein was pulse-labeled with deuterium, quenched with acid and mass analyzed by electrospray ionization mass spectrometry (ESI-MS). Hydrogen bonds that form prior to the pulse of deuterium offer protection against exchange and, therefore, retain protons at the relevant amide bonds. Consistent with the proposed refolding model, an intermediate builds up rapidly and decays slowly over the first 100 seconds of folding. ESI-MS analysis of the peptic fragments derived from alphaTS mass-labeled and quenched after two seconds of refolding indicates that the pattern of protection of the backbone amide hydrogens in this transient intermediate is very similar to that observed previously for the equilibrium intermediate of alphaTS highly populated at 3 M urea. The protection observed in a contiguous set of beta-strands and alpha-helices in the N terminus implies a significant role for this sub-domain in directing the folding of this TIM barrel protein.  相似文献   

18.
Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments.  相似文献   

19.
Parkin and PINK1 regulate a mitochondrial quality control system that is mutated in some early onset forms of Parkinson’s disease. Parkin is an E3 ubiquitin ligase and regulated by the mitochondrial kinase PINK1 via a two-step cascade. PINK1 first phosphorylates ubiquitin, which binds a recruitment site on parkin to localize parkin to damaged mitochondria. In the second step, PINK1 phosphorylates parkin on its ubiquitin-like domain (Ubl), which binds a regulatory site to release ubiquitin ligase activity. Recently, an alternative feed-forward mechanism was identified that bypasses the need for parkin phosphorylation through the binding of a second phosphoubiquitin (pUb) molecule. Here, we report the structure of parkin activated through this feed-forward mechanism. The crystal structure of parkin with pUb bound to both the recruitment and regulatory sites reveals the molecular basis for differences in specificity and affinity of the two sites. We use isothermal titration calorimetry measurements to reveal cooperativity between the two binding sites and the role of linker residues for pUbl binding to the regulatory site. The observation of flexibility in the process of parkin activation offers hope for the future design of small molecules for the treatment of Parkinson''s disease.  相似文献   

20.
Insulin-degrading enzyme (IDE) is an interesting pharmacological target for Alzheimer's disease (AD), since it hydrolyzes β-amyloid, producing non-neurotoxic fragments. It has also been shown that the somatostatin level reduction is a pathological feature of AD and that it regulates the neprilysin activity toward β-amyloid.In this work, we report for the first time that IDE is able to hydrolyze somatostatin [kcat (s− 1) = 0.38 (± 0.05); Km (M) = 7.5 (± 0.9) × 10− 6] at the Phe6-Phe7 amino acid bond. On the other hand, somatostatin modulates IDE activity, enhancing the enzymatic cleavage of a novel fluorogenic β-amyloid through a decrease of the Km toward this substrate, which corresponds to the 10-25 amino acid sequence of the Aβ(1-40). Circular dichroism spectroscopy and surface plasmon resonance imaging experiments show that somatostatin binding to IDE brings about a concentration-dependent structural change of the secondary and tertiary structure(s) of the enzyme, revealing two possible binding sites. The higher affinity binding site disappears upon inactivation of IDE by ethylenediaminetetraacetic acid, which chelates the catalytic Zn2+ ion. As a whole, these features suggest that the modulatory effect is due to an allosteric mechanism: somatostatin binding to the active site of one IDE subunit (where somatostatin is cleaved) induces an enhancement of IDE proteolytic activity toward fluorogenic β-amyloid by another subunit. Therefore, this investigation on IDE-somatostatin interaction contributes to a more exhaustive knowledge about the functional and structural aspects of IDE and its pathophysiological implications in the amyloid deposition and somatostatin homeostasis in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号