首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isoform composition of myosin light chains and the extent of their phosphorylation in skeletal and cardiac muscles of ground squirrel Citellus undulatus in different periods of hibernation were studied. Regulatory myosin light chains of skeletal muscles of hibernating ground squirrels were completely dephosphorylated, while 25% of these light chains in active animals were phosphorylated. During hibernation, a shift of isoform composition of essential and regulatory skeletal muscle myosin light chains toward slower isoforms was observed, which is evidenced by the data obtained on m. psoas and on the totality of all skeletal muscles. In the atrial myocardium of hibernating ground squirrels, ventricular myosin light chains 1 (up to 60%) were registered. In contrast, during arousal of ground squirrels, in ventricular myocardium the appearance of atrial myosin light chains 1 (up to 30%) was revealed. A possible role of posttranslation changes in myosin light chains and their isoform shifts in the hibernation scenario is discussed.  相似文献   

2.
The primary structures of light chains isolated from the human myocardium with idiopathic dilated cardiomyopathy (IDC) were determined and compared with the sequence structures of myosin light chains obtained from control human heart myosin. Sequences were determined by chemical analysis and the identity of N-terminal residues established by mass spectrometry. The N-terminal residues in essential (ELC) and regulatory (RLC) light chains were blocked and were identified to be trimethyl alanine. The amino acid sequences of ELC and RLC from control human myosin revealed a high degree of homology with those purified from rat and chicken cardiac myosin. Comparison with a published partial chemical sequence of the human heart myosin light chains revealed significant variations. However, there was very good agreement with published sequences obtained by molecular biological techniques. Sequences of the light chains from cardiomyopathic myosin revealed no difference in the primary structures when compared with control human heart myosin light chains indicating IDC had no influence on, nor was caused by, altered myosin light chain gene expression.  相似文献   

3.
In this study, myosin types in human skeletal muscle fibers were investigated with electrophoretic techniques. Single fibers were dissected out of lyophilized surgical biopsies and typed by staining for myofibrillar ATPase after preincubation in acid or alkaline buffers. After 14C-labelling of the fiber proteins in vitro by reductive methylation, the myosin light chain pattern was analysed on two-dimensional gels and the myosin heavy chains were investigated by one-dimensional peptide mapping. Surprisingly, human type I fibers, which contained only the slow heavy chain, were found to contain variable amounts of fast myosin light chains in addition to the two slow light chains LC1s and LC2s. The majority of the type I fibers in normal human muscle showed the pattern LC1s, LC2s and LC1f. Further evidence for the existence in human muscle of a hybrid myosin composed of a slow heavy chain with fast and slow light chains comes from the analysis of purified human myosin in the native state by pyrophosphate gel electrophoresis. With this method, a single band corresponding to slow myosin was obtained; this slow myosin had the light chain composition LC1s, LC2s and LC1f. Type IIA and IIB fibers, on the other hand, revealed identical light chain patterns consisting of only the fast light chains LC1f, LC2f and LC3f but were found to have different myosin havy chains. On the basis of the results presented, we suggest that the histochemical ATPase normally used for fibre typing is determined by the myosin heavy chain type (and not by the light chains). Thus, in normal human muscle a number of 'hybrid' myosins were found to occur, namely two extreme forms of fast myosins which have the same light chains but different heavy chains (IIA and IIB) and a continuum of slow forms consisting of the same heavy chain and slow light chains with a variable fast light chain composition. This is consistent with the different physiological roles these fibers are thought to have in muscle contraction.  相似文献   

4.
Myosin II is a hexameric protein complex consisting of two myosin heavy chains, two myosin essential light chains and two myosin regulatory light chains. Multiple subunit isoforms exist, allowing great diversity in myosin II composition which likely impacts on its contractile properties. Little is known about the evolutionary origin, expression pattern and function of myosin regulatory light chain (MLC2) isoforms. We analysed the evolutionary relationship between smooth muscle (sm), nonmuscle (nm) and nonmuscle-like (nml) MLC2 genes, which encode three homologous proteins expressed in nonmuscle cells. The three genes arose by successive gene duplication events. The high sequence similarity between the tandemly arranged nm- and nml-MLC2 genes is best explained by gene conversion. Urea/glycerol-polyacrylamide gel electrophoresis and RNA analysis were employed to monitor expression of sm-, nm- and nml-MLC2 in human and mouse cell lines. Conspicuous differences between transformed and non-transformed cells were observed, with sm-MLC2 being suppressed in Ras-transformed cells. Our findings shed light on the evolutionary history of three homologous MLC2 proteins and point to isoform-specific cell growth-related roles in nonmuscle cell myosin II contractility.  相似文献   

5.
Mechanical properties and isoform composition of myosin heavy and light chains were studied in hypertrophying rat urinary bladders. Growth of the bladder was induced by partial ligation of the urethra. Preparations were obtained after 10 days. In maximally activated skinned preparations from the hypertrophying tissue, the maximal shortening velocity and the rate of force development following photolytic release of ATP were reduced by about 20 and 25%, respectively. Stiffness was unchanged. The relative content of the basic isoform of the essential 17 kDa myosin light chain was doubled in the hypertrophied tissue. The expression of myosin heavy chain with a 7 amino acid insert at the 25K/50K region was determined using a peptide-derived antibody against the insert sequence. The relative amount of heavy chain with insert was decreased to 50%, in the hypertrophic tissue. The kinetics of the cross-bridge turn-over in the newly formed myosin in the hypertrophic smooth muscle is reduced, which might be related to altered expression of myosin heavy or light chain isoforms. © 1996 Wiley-Liss, Inc.  相似文献   

6.
To elucidate the functional importance of the appearance of atrial myosin light chains (ALC) in ventricles in some cardiomyopathies, a partial (75%) substitution of myosin light chains 1 and 2 of the left ventricle for ALC-1 and ALC-2 was carried out in vitro. It is shown that this substitution does not lead to changes in shapes and sizes of the filaments formed by hybrid myosin but causes changes in the shape of myosin heads. The replacement of the light chains increases the actin-activated ATPase activity of hybrid myosin by 63%. The results obtained are evidence that the substitution of ventricle myosin light chains with atrial ones is of physiological importance for the improvement of myosin functional properties and thereby for the compensation of the insufficiency of myocardium in dilated cardiomyopathy. These data and the data on dynamics of ALC-1 in diseased ventricles are important for creating the prognostic test of dilated cardiomyopathy development based on the registration of changes in the isoform composition of cardiac myosin light chains.  相似文献   

7.
The control of gene expression during terminal myogenesis was explored in heterokaryons between differentiated and undifferentiated myogenic cells by analyzing the formation of species specific myosin light chains of chick and rat skeletal muscle. Dividing L6 rat myoblasts served as the biochemically undifferentiated parent. The differentiated parental cells were mononucleated muscle cells (myocytes) that were obtained from primary cultures of embryonic chick thigh muscle by blocking myotube formation with EGTA and later incubating the postimitotic cells in cytochalasin B. Heterokaryons were isolated by the selective rescue of fusion products between cells previously treated with lethal doses of different cell poisons. 95-99% pure populations of heterokaryons formed between undifferentiated rat myoblasts and differentiated chick myocytes were obtained. The cells were labeled with [35S]methionine, and whole cell extracts were analyzed on two-dimensional polyacrylamide gels. These heterokaryons synthesize the light chain of chick myosin and both embryonic and adult light chains of rat skeletal myosin. Control homokaryons formed by fusing undifferentiated cells to themselves did not synthesize skeletal myosin light chains. Control heterokaryons formed between undifferentiated rat myoblasts and chick fibroblasts also failed to synthesize myosin light chains. These results indicate that differentiated chick muscle cells provide some factor that induces L6 myoblasts to synthesize rat myosin light chains. This system provides a model for investigating the processes by which differentiated cell functions are induced.  相似文献   

8.
Changes in myosin isozymes during development of chicken breast muscle   总被引:1,自引:0,他引:1  
The patterns of myosin isozymes in embryonic and adult chicken pectoralis muscle were examined by electrophoresis in a non-denaturing gel system (pyrophosphate acrylamide gel electrophoresis), and both light chains and heavy chains of embryonic and adult myosin isozymes were compared. In pyrophosphate acrylamide gel electrophoresis, the predominant isozyme component in embryonic pectoralis myosin could be clearly distinguished from adult myosin isozymes. SDS-polyacrylamide gel electrophoresis indicated that the light chain composition of embryonic myosin was also different from that of adult myosin. The pattern of peptide fragments produced by myosin digestion with a-chymotrypsin differed significantly between embryonic and adult skeletal myosin. These results suggest that myosin in the embryonic pectoralis muscle is different in both light and heavy chain composition from myosin in the same adult tissue.  相似文献   

9.
Phylogenetic studies of cardiac myosins from amphibia to mammals   总被引:1,自引:0,他引:1  
Comparison between pig atrial and ventricular myosins was performed on the light chains (using SDS-PAGE) and on the heavy chains (using Ca2+-ATPase measurements and NTCBA peptide mapping). Light chain composition of pig cardiac myosins was compared to three other species ones (frog, chicken and human). Up to birds, atrial and ventricular myosin light chain composition was identical whereas in mammals atrial and ventricular myosin light chain composition was different; likewise the heavy chains. Six cardiac myosin isoenzymes have been thus characterized. No correlation can be established between cardiac myosin light chain pattern and species evolution.  相似文献   

10.
The in situ distribution of the alpha and beta myosin light chains was investigated at the subsarcomeric and subfilament levels in individual fibers of the superficial flexor muscle (SFM) of the lobster, Homarus americanus. Polyclonal antibodies were produced against the two classes of myosin light chains and used for subsequent immunolocalization on thin sections of sarcomeres and on isolated filaments from both the medial and lateral fiber bundles of the SFM. The beta myosin light chains were uniformly distributed within the crossbridge region of sarcomeres of both medial and lateral bundles. The alpha myosin light chains were uniformly distributed within the crossbridge region of sarcomeres from the medial bundle, but were nonuniformly distributed over the crossbridge region of lateral bundle sarcomeres. In the latter, the number of alpha myosin light chains was highest toward the center of the thick filaments, diminishing towards the ends. Similar distributions of alpha light chains were found in isolated myosin filaments. These data demonstrate that heterogeneity in protein composition extends to the level of the myosin filament and suggest that the myosin filament substructure in lobster may be different than that found in vertebrate skeletal muscle.  相似文献   

11.
Scallop myosin molecules contain two moles of regulatory light chains and two moles of light chains with unknown function. Removal of one of the regulatory light chains by treatment with EDTA is accompanied by the complete loss of the calcium dependence of the actin-activated ATPase activity and by the loss of one of the two calcium binding sites on the intact molecule. Such desensitized preparations recombine with one mole of regulatory light chain and regain calcium regulation and calcium binding. The second regulatory light chain may be selectively obtained from EDTA-treated scallop muscles by treatment with the Ellman reagent (5,5′-dithiobis(2-nitrobenzoic acid)): treatment with this reagent, however, leads to an irreversible loss of ATPase activity. The light chains obtained by treatment with EDTA and then DTNB are identical in composition and function. A different light chain fraction obtained by subsequent treatment with guanidine-HCl does not bind to desensitized or intact myoflbrils and has no effect on ATPase activity.Regulatory light chains which bind to desensitized scallop myofibrils with high affinity and restore calcium control were found in a number of molluscan and vertebrate myosins, including Mercenaria, Spisula, squid, lobster tail, beef heart, chicken gizzard, frog and rabbit. Although these myosins all have a similar subunit structure and contain about two moles of regulatory light chain, only scallop myosin or myofibrils can be desensitized by treatment with EDTA.There appear to be two classes of regulatory light chains. The regulatory light chains of molluscs and of vertebrate smooth muscles restore full calcium binding and also resensitize purified scallop myosin. The regulatory light chains from vertebrate striated, cardiac, and the fast decapod muscles, on the other hand, have no effect on calcium binding and do not resensitize purified scallop myosin unless the myosin is complexed with actin. The latter class of light chains is found in muscles where in vitro functional tests failed to detect myosin-linked regulation.  相似文献   

12.
13.
Phosphorylation of the regulatory light chains (RMLC) of nonmuscle myosin can increase the actin-activated ATPase activity and filament formation. Little is known about these regulatory mechanisms and how the RMLC are involved in ATP hydrolysis. To better characterize the nonmuscle RMLC, we isolated cDNAs encoding the Dictyostelium RMLC. Using an antibody specific for the RMLC, we screened a lambda gt11 expression library and obtained a 200-base-pair clone that encoded a portion of the RMLC. The remainder of the sequence was obtained from two clones identified by DNA hybridization, using the 200-base-pair cDNA. The composite RMLC cDNA was 645 nucleotides long. It contained 60 base pairs of 5' untranslated, 483 bases of coding, and 102 base pairs of 3' untranslated sequence. The amino acid sequence predicted an 18,300-dalton protein that shares 42% amino acid identity with Dictyostelium calmodulin and 30% identity with the chicken skeletal myosin RMLC. This sequence contained three regions that were similar to the E-F hand calcium-binding domains found in calmodulin, troponin C, and other myosin light chains. A sequence similar to the phosphorylation sequence found in chicken gizzard and skeletal myosin light chains was found at the amino terminus. Genomic Southern blot analysis suggested that the Dictyostelium genome contains a single gene encoding the RMLC. Analysis of RMLC expression patterns during Dictyostelium development indicated that accumulation of this mRNA increases just before aggregation and again during culmination. This pattern is similar to that obtained for the Dictyostelium essential myosin light chain and suggests that expression of the two light chains is coordinated during development.  相似文献   

14.
The expression of myosin isoforms and their subunit composition in the white skeletal body musculature of Arctic charr (Salvelinus alpinus) of different ages (from 77-day embryos until about 5 years old) was studied at the protein level by means of electrophoretic techniques. Myosin from the white muscle displayed three types of light chain during all the developmental stages examined: two myosin light chains type 1 (LC1F) differing in both apparent molecular mass and pI, one myosin light chain type 2 (LC2F) and one myosin light chain type 3 (LC3F). The fastest-migrating form of LC1F seemed to be predominant during the embryonic and eleutheroembryonic periods. The slowest-migrating form of LC1F was predominant in the 5-year-old fish. Between 1 year and 4 years, both types of LC1F were present in similar amounts. Cardiac as well as red muscle myosin from 3-year-old fish had two types of light chain. The myosin light chains from atria and ventriculi were indistinguishable by two-dimensional electrophoresis, but were different from the myosin light chains from red muscle. Neither the light chains from cardiac nor red muscle were coexpressed with the myosin light chains of white muscle at any of the developmental stages examined. Two myosin heavy chain bands were resolved by SDS/glycerol/polyacrylamide gel electrophoresis of the extract from embryos. One of the bands was present in minor amounts. The other, and most abundant, band comigrated with the only band found in the extracts of white muscle myosin from older fish. One-dimensional Staphylococcus aureus V8 protease peptide mapping of these bands revealed some differences during development of the white muscle tentatively interpreted as follows. The myosin heavy chain band present in minor amounts in the embryos may represent an early embryonic form that is replaced by a late embryonic or foetal form in the eleutheroembryos. The foetal myosin heavy chain appears to be present until the resorption of the yolk sack and beginning of the free-swimming stage. A new form of myosin heavy chain, termed neonatal and probably expressed around hatching, is present until about 1 year of age.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Comparison of atrial and ventricular myosin light chains was performed using peptide mapping of electrophoretically purified proteins. In birds atrial and ventricular myosin light chain composition was identical. In mammals atrial and ventricular myosin light chains are different and species specific.  相似文献   

16.
In studies of myosin from left and right ventricles of normal hearts and hypertrophic hearts at 5 weeks and 13 weeks after aortic banding, polyacrylamide gel electrophoresis shows intermediate molecular weight components which derive from heavy chains fragmented in the presence of dodecyl sulfate. The proportion of degraded heavy chains is greater in myosin from hypertrophic hearts than normal hearts, with comparable degradation in left and right ventricle myosin. The observed fragmentation of myosin results from proteolysis due to contaminant proteases or a thermally activated, heat-stable nonenzymatic process, or both. The susceptibility of heavy chains to crude myofibrillar proteases differs in normal and hypertrophic cardiac myosin; however, the kinetics of tryptic digestion are identical for both myosins. With precautions to minimize proteolytic artifacts on dodecyl sulfate-polyacrylamide gel electrophoresis, preparations of myosin from left and right ventricles of normal and hypertrophic hearts exhibit comparable subunit composition, with approximately molar ratios of heavy chains, light chain L1, and light chain L2. Comparable stoichiometry for the light chain fraction is determined by high speed sedimentation equilibrium at pH 11 and direct fractionation of the different cardiac myosins. We do not confirm reports (e.g. Wikman-Coffelt, J., Fenner, C., Smith, A., and Mason, D. T. (1975) J. Biol. Chem. 250, 1257-1262) of different proportions of light chains in left and right ventricle myosin of normal and hypertrophic canine hearts. The light chains display microheterogeneity, with L1 generating two isoelectric variants and L2 generating two major and two minor variants, but identical mobilities and isoelectric values are obtained in the different myosin preparations.  相似文献   

17.
Calcium control was studied in single-headed myosin and subfragment-1 (S1) preparations obtained by papain digestion of scallop myosin. Single-headed myosin, containing light chains in stoichiometric amounts, was calcium regulated; in contrast, the actin-activated Mg-ATPase of all S1 species lacked calcium sensitivity. Both regulatory and essential light chains were retained by S1 and single-headed myosin preparations provided divalent cations were present during papain digestion, although a peptide amounting to 10% of the mass was removed from regulatory light chains. The modified regulatory light chain retained its ability to confer calcium binding and restore calcium sensitivity to the ATPase of desensitized myofibrils. Regulatory light chains protected the essential light chains from fragmentation by papain. S1 bound regulatory light chains with a uniformly high affinity and appeared to consist of a single species. The results demonstrate that head to head interactions are not obligatory for calcium control, although they may occur in the intact myosin molecule, and suggest a role for the subfragment-2 region in calcium regulation of myosin.  相似文献   

18.
We have purified myosin from isolated rabbit liver cells that had been previously shown to be well separated from blood vessels and connective tissue (Okamoto, Y. et al. (1983) J. Biochem. 94, 645-653). It comprises a 200-kDa heavy chain and light chains of 24-kDa, 22-kDa, and 17-kDa. In the light chain composition and in the mobility in PPi-PAGE, liver cell myosin differs from the myosin in liver blood vessels. The light chains of liver cell myosin were phosphorylated by myosin light-chain kinase from chicken gizzard and the Mg2+-ATPase activity of phosphorylated myosin was activated 10-fold by F-actin.  相似文献   

19.
Frog myosin is a labile molecule, undergoing irreversible aggregation and rapid loss of ATPase; however, a procedure is described which provides highly purified myosin, with stable solubility and enzymatic properties, from skeletal muscle of Rana catesbeiana. Frog myosin contains heavy chains and light chains 1, 2, and 3. Light chain 3 is present in excess over light chain 1, and light chain 2 may occur as either, or both, of 2 closely migrating bands. On two-dimensional electrophoresis, light chain 1 generates an isoelectric component with pK 5.60; light chain 2 generates a complex pattern with 3 or 4 major components; and light chain 3 generates 2 major components with pK 5.00 and 4.92. The same subunit composition is obtained for frogs acclimated at 25 and 5 degrees C; however, proteolytic artifacts may occur in myosin preparations purified in the absence of protease inhibitors, especially in warm-acclimated frogs.  相似文献   

20.
Like other vertebrate nonmuscle myosins, thymus myosin contains two phosphorylatable light chains. Phosphorylation of these light chains regulates the actin-activated ATPase of this myosin. The time courses for the phosphorylation of both monomeric and filamentous thymus myosin by gizzard myosin light chain kinase fitted single exponentials to greater than 85% phosphorylation. This indicates that the two heads of thymus myosin are phosphorylated at the same rate and suggests that these phosphorylations are random processes. The actin-activated ATPases of thymus myosins with different levels of light chain phosphorylation were also determined. A linear relationship was obtained between the extent of light chain phosphorylation and stimulation of the actin-activated ATPase. Since thymus myosin appears to be phosphorylated randomly, this linear relationship indicates that phosphorylation of one head of thymus myosin stimulates the actin-activated ATPase of that head independently of the phosphorylation of the second head. The apparent random phosphorylation of thymus myosin light chains contrasts with the reported ordered phosphorylation of the light chains of filamentous smooth (gizzard) muscle myosin. Also, while the actin-activated ATPases of the two heads of thymus myosin are regulated independently, both heads of gizzard myosin must be phosphorylated before the ATPase of either head is activated by actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号