首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A growing number of studies describe a connection between glycosphingolipids (GSLs) and glutamine metabolism, glucose metabolism and mitochondrial dysfunction in cancer cells. Since deregulated cell energy metabolism is one of cancer cells hallmarks, investigating this connection is an important step in the development of anti-cancer therapies. GSL species are often aberrantly regulated in human cancers. They cluster in signaling platforms in the plasma membrane and organelle membranes in so called glycosphingolipid enriched microdomains (GEMs), thereby regulating cell signaling pathways. The most important glutamine transporter for epithelial cells, alanine-serine-cysteine transporter 2 (ASCT2) locates in GEMs and is regulated by GEM composition. The accumulation of glucosylceramide and lactosylceramide in mitochondria associated ER membranes (MAMs) leads to increased oxidative phosphorylation. This increases mitochondrial reactive oxygen species (ROS) levels and influences mitochondrial dynamics. Here, we review current knowledge about deregulated GSL species in cancer, GSL influence on glutamine and glucose metabolism. In addition, the role of GSLs in MAMs, oxidative phosphorylation (OXPHOS) and mitochondrial dynamics with a special focus on mechanistic target of rapamycin (mTOR) signaling is discussed. mTOR seems to play a pivotal role in the connection between GSLs and glutamine metabolism as well as in mitochondrial signaling.  相似文献   

2.
Although mitochondria are essential organelles for long-term survival of eukaryotic cells, recent discoveries in biochemistry and genetics have advanced our understanding of the requirements for mitochondria in cell death. Much of what we understand about cell death is based on the identification of conserved cell death genes in Drosophila melanogaster and Caenorhabditis elegans. However, the role of mitochondria in cell death in these models has been much less clear. Considering the active role that mitochondria play in apoptosis in mammalian cells, the mitochondrial contribution to cell death in non-mammalian systems has been an area of active investigation. In this article, we review the current research on this topic in three non-mammalian models, C. elegans, Drosophila, and Saccharomyces cerevisiae. In addition, we discuss how non-mammalian models have provided important insight into the mechanisms of human disease as they relate to the mitochondrial pathway of cell death. The unique perspective derived from each of these model systems provides a more complete understanding of mitochondria in programmed cell death. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

3.
Cancer stem cells(CSCs) are maintained by theirsomatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondriatargeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondriatargeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.  相似文献   

4.
The transfer of Ca2+ from the cytosol into the lumen of mitochondria is a crucial process that impacts cell signaling in multiple ways. Cytosolic Ca2+ ([Ca2+]cyto) can be excellently quantified with the ratiometric Ca2+ probe fura-2, while genetically encoded Förster resonance energy transfer (FRET)-based fluorescent Ca2+ sensors, the cameleons, are efficiently used to specifically measure Ca2+ within organelles. However, because of a significant overlap of the fura-2 emission with the spectra of the cyan and yellow fluorescent protein of most of the existing cameleons, the measurement of fura-2 and cameleons within one given cell is a complex task. In this study, we introduce a novel approach to simultaneously assess [Ca2+]cyto and mitochondrial Ca2+ ([Ca2+]mito) signals at the single cell level. In order to eliminate the spectral overlap we developed a novel red-shifted cameleon, D1GO-Cam, in which the green and orange fluorescent proteins were used as the FRET pair. This ratiometric Ca2+ probe could be successfully targeted to mitochondria and was suitable to be used simultaneously with fura-2 to correlate [Ca2+]cyto and [Ca2+]mito within same individual cells. Our data indicate that depending on the kinetics of [Ca2+]cyto rises there is a significant lag between onset of [Ca2+]cyto and [Ca2+]mito signals, pointing to a certain threshold of [Ca2+]cyto necessary to activate mitochondrial Ca2+ uptake. The temporal correlation between [Ca2+]mito and [Ca2+]cyto as well as the efficiency of the transfer of Ca2+ from the cytosol into mitochondria varies between different cell types. Moreover, slow mitochondrial Ca2+ extrusion and a desensitization of mitochondrial Ca2+ uptake cause a clear difference in patterns of mitochondrial and cytosolic Ca2+ oscillations of pancreatic beta-cells in response to D-glucose.  相似文献   

5.
Maintaining the functional integrity of mitochondria is crucial for cell function, signal transduction and overall cell activities. Mitochondrial dysfunctions may alter energy metabolism and in many cases are associated with neurological diseases. Recent studies have reported that mutations in dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1), a mitochondrial protein encoding gene, could cause neurological abnormalities. However, the function of DHTKD1 in mitochondria remains unknown. Here, we report a strong correlation of DHTKD1 expression level with ATP production, revealing the fact that DHTKD1 plays a critical role in energy production in mitochondria. Moreover, suppression of DHTKD1 leads to impaired mitochondrial biogenesis and increased reactive oxygen species (ROS), thus leading to retarded cell growth and increased cell apoptosis. These findings demonstrate that DHTKD1 contributes to mitochondrial biogenesis and function maintenance.  相似文献   

6.
Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.  相似文献   

7.
8.
Mitochondrial alterations have been documented for many years in the brains of Parkinson’s disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson’s disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson’s disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson’s disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn2+ and Pb2+) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson’s disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson’s disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson’s disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to another neuron toxicant Mn2+ at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrate that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model.  相似文献   

9.
10.
11.
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders.Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.  相似文献   

12.
Mitochondria are critical for neuronal function due to the high demand of ATP in these cell types. During Drosophila development, neuroblasts in the larval brain divide asymmetrically to populate the adult central nervous system. While many of the proteins responsible for maintaining neuroblast cell fate and asymmetric cell divisions are known, little is know about the role of metabolism and mitochondria in neuroblast division and maintenance. The gene clueless (clu) has been previously shown to be important for mitochondrial function. clu mutant adults have severely shortened lifespans and are highly uncoordinated. Part of their lack of coordination is due to defects in muscle, however, in this study we have identified high levels of Clu expression in larval neuroblasts and other regions of the dividing larval brain. We show while mitochondria in clu mutant neuroblasts are mislocalized during the cell cycle, surprisingly, overall brain morphology appears to be normal. This is explained by our observation that clu mutant larvae have normal levels of ATP and do not suffer oxidative damage, in sharp contrast to clu mutant adults. Mutations in two other genes encoding mitochondrial proteins, technical knockout and stress sensitive B, do not cause neuroblast mitochondrial mislocalization, even though technical knockout mutant larvae suffer oxidative damage. These results suggest Clu functions upstream of electron transport and oxidative phosphorylation, has a role in suppressing oxidative damage in the cell, and that lack of Clu’s specific function causes mitochondria to mislocalize. These results also support the previous observation that larval development relies on aerobic glycolysis, rather than oxidative phosphorylation. Thus Clu’s role in mitochondrial function is not critical during larval development, but is important for pupae and adults.  相似文献   

13.
The inotropic effect of Pr3+ and La3+ ions on the heart muscle of frog Rana ridibunda, as well as the influence of the ions on respiration, swelling, and the potential (ΔΨmito) on the inner membrane of Ca2+- loaded rat heart mitochondria, energized by glutamate and malate or succinate in the presence of rotenone were studied. It was found that 2 mM Pr3+ in Ringer’s solution reduces the force of spontaneous contractions and those induced by electrical stimulation in the heart; it had a negative chronotropic effect, decreasing the frequency of spontaneous contractions. Pr3+ and La3+ prevented a decrease in the 2,4-dinitrophenol (DNP)- uncoupled respiration of energized rat heart mitochondria, swelling of these organelles in salt media, and a reduction in ΔΨmito on the inner mitochondrial membrane that were induced by Ca2+ ions. Retardation by Pr3+ and La3+ ions of these calcium-induced effects may suggest that in the inner mitochondrial membrane these metals inhibit the opening of the mitochondrial permeability transition pore caused by Ca2+ overload of mitochondria. The data we obtained are important for a better understanding of the mechanisms of the damaging action of rare-earth elements on Ca2+-dependent processes in the vertebrate myocardium.  相似文献   

14.
Mitochondria have an essential role in powering cells by generating ATP following the metabolism of pyruvate derived from glycolysis. They are also the major source of generating reactive oxygen species (ROS), which have regulatory roles in cell death and proliferation. Mutations in mitochondrial DNA (mtDNA) and dysregulation of mitochondrial metabolism have been frequently described in human tumors. Although the role of oxidative stress as the consequence of mtDNA mutations and/or altered mitochondrial functions has been demonstrated in carciongenesis, a causative role of mitochondria in tumor progression has only been demonstrated recently. Specifically, the subject of this mini-review focuses on the role of mitochondria in promoting cancer metastasis. Cancer relapse and the subsequent spreading of cancer cells to distal sites are leading causes of morbidity and mortality in cancer patients. Despite its clinical importance, the underlying mechanisms of metastasis remain to be elucidated. Recently, it was demonstrated that mitochondrial oxidative stress could actively promote tumor progression and increase the metastatic potential of cancer cells. The purpose of this mini-review is to summarize current investigations of the roles of mitochondria in cancer metastasis. Future development of diagnostic and therapeutic strategies for patients with advanced cancer will benefit from the new knowledge of mitochondrial metabolism in epithelial cancer cells and the tumor stroma.  相似文献   

15.
Mitochondria play a central role not only in energy production but also in the integration of metabolic pathways as well as signals for apoptosis and autophagy. It is becoming increasingly apparent that mitochondria in mammalian cells play critical roles in the initiation and propagation of various signaling cascades. In particular, mitochondrial metabolic and respiratory states and status on mitochondrial genetic instability are communicated to the nucleus as an adaptive response through retrograde signaling. Each mammalian cell contains multiple copies of the mitochondrial genome (mtDNA). A reduction in mtDNA copy number has been reported in various human pathological conditions such as diabetes, obesity, neurodegenerative disorders, aging and cancer. Reduction in mtDNA copy number disrupts mitochondrial membrane potential (Δψm) resulting in dysfunctional mitochondria. Dysfunctional mitochondria trigger retrograde signaling and communicate their changing metabolic and functional state to the nucleus as an adaptive response resulting in an altered nuclear gene expression profile and altered cell physiology and morphology. In this review, we provide an overview of the various modes of mitochondrial retrograde signaling focusing particularly on the Ca2 +/Calcineurin mediated retrograde signaling. We discuss the contribution of the key factors of the pathway such as Calcineurin, IGF1 receptor, Akt kinase and HnRNPA2 in the propagation of signaling and their role in modulating genetic and epigenetic changes favoring cellular reprogramming towards tumorigenesis.  相似文献   

16.
The role of autophagy in cancer is complex and context-dependent. Here we describe work with genetically engineered mouse models of non-small cell lung cancer (NSCLC) in which the tumor-suppressive and tumor-promoting function of autophagy can be visualized in the same system. We discovered that early tumorigenesis in Braf V600E -driven lung cancer is accelerated by autophagy ablation due to unmitigated oxidative stress, as observed with loss of Nfe2l2/Nrf2-mediated antioxidant defense. However, this growth advantage is eventually overshadowed by progressive mitochondrial dysfunction and metabolic insufficiency, and is associated with increased survival of mice bearing autophagy-deficient tumors. Atg7 deficiency alters progression of Braf V600E-driven tumors from adenomas (Braf V600E ; atg7−/−) and adenocarcinomas (trp53−/−; Braf V600E ; atg7−/−) to benign oncocytomas that accumulated morphologically and functionally defective mitochondria, suggesting that defects in mitochondrial metabolism may compromise continued tumor growth. Analysis of tumor-derived cell lines (TDCLs) revealed that Atg7-deficient cells are significantly more sensitive to starvation than Atg7–wild-type counterparts, and are impaired in their ability to respire, phenotypes that are rescued by the addition of exogenous glutamine. Taken together, these data suggest that Braf V600E -driven tumors become addicted to autophagy as a means to preserve mitochondrial function and glutamine metabolism, and that inhibiting autophagy may be a powerful strategy for Braf V600E -driven malignancies.  相似文献   

17.
Tail regression in tadpoles is one of the most spectacular events in anuran metamorphosis. Reactive oxygen species and oxidative stress play an important role during this process. Presently, the cell- and tissue-specific localization of antioxidant enzymes such as superoxide dismutase (SOD) and catalase as well as neuronal and inducible nitric oxide synthase isoforms (nNOS and iNOS) responsible for production of nitric oxide (NO) were carried out during different stages of metamorphosis in tail of tadpole Xenopus laevis. NO also has profound effect on the mitochondrial function having its own nitric oxide NOS enzyme. Hence, in situ staining for NO and mitochondria also was investigated. The distribution of nNOS and iNOS was found to be stage specific, and the gene expression of nNOS was up-regulated by thyroxin treatment. In situ staining for NO and mitochondria shows co-localization, suggesting mitochondria being one of the sources of NO. SOD and catalase showed significant co-localization during earlier stages of metamorphosis, but before the tail regression begins, there was a significant decrease in activity as well as co-localization suggesting increased ROS accumulation. These findings are discussed in terms of putative functional importance of ROS and cytoplasmic as well as mitochondrial derived NO in programmed cell death in tail tissue.  相似文献   

18.
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.  相似文献   

19.

Background

Recently, there has been a surge of interest in developing compounds selectively targeting mitochondria for the treatment of neoplasms. The critical role of mitochondria in cellular metabolism and respiration supports this therapeutic rationale. Dysfunction in the processes of energy production and metabolism contributes to attenuation of response to pro-apoptotic stimuli and increased ROS production both of which are implicated in the initiation and progression of most human cancers.

Methodology/Principal Findings

A high-throughput MTT-based screen of over 10,000 drug-like small molecules for anti-proliferative activity identified the phosphonium salts TP187, 197 and 421 as having IC50 concentrations in the submicromolar range. TP treatment induced cell cycle arrest independent of p53 status, as determined by analysis of DNA content in propidium iodide stained cells. In a mouse model of human breast cancer, TP-treated mice showed significantly decreased tumor growth compared to vehicle or paclitaxel treated mice. No toxicities or organ damage were observed following TP treatment. Immunohistochemical staining of tissue sections from TP187-treated tumors demonstrated a decrease in cellular proliferation and increased caspase-3 cleavage. The fluorescent properties of analog TP421 were exploited to assess subcellular uptake of TP compounds, demonstrating mitochondrial localization. Following mitochondrial uptake cells exhibited decreased oxygen consumption and concomittant increase in mitochondrial superoxide production. Proteomics analysis of results from a 600 target antibody microarray demonstrated that TP compounds significantly affected signaling pathways relevant to growth and proliferation.

Conclusions/Significance

Through our continued interest in designing compounds targeting cancer-cell metabolism, the Warburg effect, and mitochondria we recently discovered a series of novel, small-molecule compounds containing a triphenylphosphine moiety that show remarkable activity in a panel of cancer cell lines as well as in a mouse model of human breast cancer. The mechanism of action includes mitochondrial localization causing decreased oxygen consumption, increased superoxide production and attenuated growth factor signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号