共查询到20条相似文献,搜索用时 0 毫秒
1.
It is well known that efficient functioning of photosynthetic (PET) and respiratory electron transport (RET) in cyanobacteria requires the presence of either cytochrome c6 (Cytc6) or plastocyanin (PC). By contrast, the interaction of an additional redox carrier, cytochrome cM (CytcM), with either PET or RET is still under discussion. Here, we focus on the (putative) role of CytcM in cyanobacterial respiration. It is demonstrated that genes encoding the main terminal oxidase (cytochrome c oxidase, COX) and cytochrome cM are found in all 44 totally or partially sequenced cyanobacteria (except one strain). In order to check whether CytcM can act as electron donor to COX, we investigated the intermolecular electron transfer kinetics between CytcM and the soluble CuA domain (i.e. the donor binding and electron entry site) of subunit II of COX. Both proteins from Synechocystis PCC6803 were expressed heterologously in E. coli. The forward and the reverse electron transfer reactions were studied yielding apparent bimolecular rate constants of (2.4 ± 0.1) × 105 M− 1 s− 1 and (9.6 ± 0.4) × 103 M− 1 s− 1 (5 mM phosphate buffer, pH 7, 50 mM KCl). A comparative analysis with Cytc6 and PC demonstrates that CytcM functions as electron donor to CuA as efficiently as Cytc6 but more efficient than PC. Furthermore, we demonstrate the association of CytcM with the cytoplasmic and thylakoid membrane fractions by immunobloting and discuss the potential role of CytcM as electron donor for COX under stress conditions. 相似文献
2.
Elisa Fadda 《BBA》2008,1777(3):277-284
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway. 相似文献
3.
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2-reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane. 相似文献
4.
Blas Moreno-Beltrán Antonio Díaz-Quintana Katiuska González-Arzola Adrián Velázquez-Campoy Miguel A. De la Rosa Irene Díaz-Moreno 《BBA》2014
In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a “floating boat bridge” of cytochrome c molecules (between complexes III and IV) in plant respirasome. 相似文献
5.
The transient electron transfer (ET) interactions between cytochrome c1 of the bc1-complex from Paracoccus denitrificans and its physiological redox partners cytochrome c552 and cytochrome c550 have been characterized functionally by stopped-flow spectroscopy. Two different soluble fragments of cytochrome c1 were generated and used together with a soluble cytochrome c552 module as a model system for interprotein ET reactions. Both c1 fragments lack the membrane anchor; the c1 core fragment (c1CF) consists of only the hydrophilic heme-carrying domain, whereas the c1 acidic fragment (c1AF) additionally contains the acidic domain unique to P. denitrificans. In order to determine the ionic strength dependencies of the ET rate constants, an optimized stopped-flow protocol was developed to overcome problems of spectral overlap, heme autoxidation and the prevalent non-pseudo first order conditions. Cytochrome c1 reveals fast bimolecular rate constants (107 to 108 M− 1 s− 1) for the ET reaction with its physiological substrates c552 and c550, thus approaching the limit of a diffusion-controlled process, with 2 to 3 effective charges of opposite sign contributing to these interactions. No direct involvement of the N-terminal acidic c1-domain in electrostatically attracting its substrates could be detected. However, a slight preference for cytochrome c550 over c552 reacting with cyochrome c1 was found and attributed to the different functions of both cytochromes in the respiratory chain of P. denitrificans. 相似文献
6.
Linda Näsvik Öjemyr Amandine Maréchal Henrik Vestin Brigitte Meunier Peter R. Rich Peter Brzezinski 《BBA》2014
We have studied internal electron transfer during the reaction of Saccharomyces cerevisiae mitochondrial cytochrome c oxidase with dioxygen. Similar absorbance changes were observed with this yeast oxidase as with the previously studied Rhodobacter sphaeroides and bovine mitochondrial oxidases, which suggests that the reaction proceeds along the same trajectory. However, notable differences were observed in rates and electron-transfer equilibrium constants of specific reaction steps, for example the ferryl (F) to oxidized (O) reaction was faster with the yeast (0.4 ms) than with the bovine oxidase (~ 1 ms) and a larger fraction CuA was oxidized with the yeast than with the bovine oxidase in the peroxy (PR) to F reaction. Furthermore, upon replacement of Glu243, located at the end of the so-called D proton pathway, by Asp the PR → F and F → O reactions were slowed by factors of ~ 3 and ~ 10, respectively, and electron transfer from CuA to heme a during the PR → F reaction was not observed. These data indicate that during reduction of dioxygen protons are transferred through the D pathway, via Glu243, to the catalytic site in the yeast mitochondrial oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. 相似文献
7.
8.
In this work we have investigated the effect of a pathogenic mitochondrial DNA mutation found in human colon cells, at a functional-molecular level. The mutation results in the amino-acid substitution Tyr19His in subunit I of the human CytcO and it is associated with respiratory deficiency. It was introduced into Rhodobacter sphaeroides, which carries a cytochrome c oxidase (cytochrome aa3) that serves as a model of the mitochondrial counterpart. The residue is situated in the middle of a pathway that is used to transfer substrate protons as well as protons that are pumped across the membrane. The Tyr33His (equivalent residue in the bacterial CytcO) structural variant of the enzyme was purified and its function was investigated. The results show that in the structurally altered CytcO the activity decreased due to slowed proton transfer; proton transfer from an internal proton donor, the highly-conserved Glu286, to the catalytic site was slowed by a factor of ∼ 5, while reprotonation of the Glu from solution was slowed by a factor of ∼ 40. In addition, in the structural variant proton pumping was completely impaired. These results are explained in terms of introduction of a barrier for proton transfer through the D pathway and changes in the coordination of water molecules surrounding the Glu286 residue. The study offers an explanation, at the molecular level, to the link between a specific amino-acid substitution and a pathogenic phenotype identified in human colon cells. 相似文献
9.
Kristina Faxén 《BBA》2007,1767(5):381-386
Cytochrome c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria where it translocates protons across a membrane thereby maintaining an electrochemical proton gradient. Results from earlier studies on detergent-solubilized cytochrome c oxidase have shown that individual reaction steps associated with proton pumping display pH-dependent kinetics. Here, we investigated the effect of pH on the kinetics of these reaction steps with membrane-reconstituted cytochrome c oxidase such that the pH was adjusted to different values on the inside and outside of the membrane. The results show that the pH on the inside of the membrane fully determines the kinetics of internal electron transfers that are linked to proton pumping. Thus, even though proton release is rate limiting for these reaction steps (Salomonsson et al., Proc. Natl. Acad. Sci. USA, 2005, 102, 17624), the transition kinetics is insensitive to the outside pH (in the range 6-9.5). 相似文献
10.
Holocytochrome c synthase (HCCS) attaches heme covalently to mitochondrial respiratory cytochromes c. Little is known about the reaction of heme attachment to apocytochromes c by HCCS, although recently it has been established that the CXXCH motif and the N-terminus of the apocytochrome polypeptide are important protein–protein recognition motifs. Here, we explore further the important features of the N-terminal sequence and investigate what variations in the CXXCH residues are productively recognised by HCCS in its substrate. 相似文献
11.
Arti Parihar Mordhwaj S. Parihar Rafal Nazarewicz Pedram Ghafourifar 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
Ceramides are intracellular lipid mediator implicated in various cellular responses, including oxidative stress and programmed cell death. Studies demonstrated strong links between ceramide and the mitochondria in the regulation of apoptosis. However, the mechanism of apoptosis induced by ceramides is not fully understood. The present study delineates importance of the redox state of cytochrome c for release of cytochrome c and apoptosis of human mammary adenocarcinoma MCF-7 and MDA-MB-231 cells induced by ceramides.Methods
The study uses MCF-7 and MDA-MB-231 cells, isolated mitochondria, submitochondrial particles, and oxidized and reduced cytochrome c. Methods used include flow cytometry, immunoblotting, spectroscopy, and respirometry.Results
We show that ceramides induce mitochondrial oxidative stress and release of cytochrome c from the mitochondria of these cells. Our findings show that ceramides react with oxidized cytochrome c whereas reduced cytochrome c does not react with ceramides. We also show that oxidized cytochrome c reacted with ceramides exerts lower reducibility and function to support mitochondrial respiration. Furthermore, our data show that glutathione protects cytochrome c of reacting with ceramides by increasing the reduced state of cytochrome c.Conclusions
Ceramides induce oxidative stress and apoptosis in human mammary adenocarcinoma cells by interacting with oxidized cytochrome c leading to the release of cytochrome c from the mitochondria. Our findings suggest a novel mechanism for protective role of glutathione.General significance
Our study suggests that the redox state of cytochrome c is important in oxidative stress and apoptosis induced by ceramides. 相似文献12.
Diana Chinchilla Heather Kilheeney Lidia B. Vitello James E. Erman 《Biochemical and biophysical research communications》2014
Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M−1 s−1 and 0.34 ± 0.15 s−1, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min−1 at pH 6.0. 相似文献
13.
This paper describes the problems of measuring the allosteric ATP-inhibition of cytochrome c oxidase (CcO) in isolated mitochondria. Only by using the ATP-regenerating system phosphoenolpyruvate and pyruvate kinase full ATP-inhibition of CcO could be demonstrated by kinetic measurements. The mechanism was proposed to keep the mitochondrial membrane potential (?Ψm) in living cells and tissues at low values (100-140 mV), when the matrix ATP/ADP ratios are high. In contrast, high ?Ψm values (180-220 mV) are generally measured in isolated mitochondria. By using a tetraphenyl phosphonium electrode we observed in isolated rat liver mitochondria with glutamate plus malate as substrates a reversible decrease of ?Ψm from 233 to 123 mV after addition of phosphoenolpyruvate and pyruvate kinase. The decrease of ?Ψm is explained by reversal of the gluconeogenetic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase yielding ATP and GTP, thus increasing the matrix ATP/ADP ratio. With rat heart mitochondria, which lack these enzymes, no decrease of ?Ψm was found. From the data we conclude that high matrix ATP/ADP ratios keep ?Ψm at low values by the allosteric ATP-inhibition of CcO, thus preventing the generation of reactive oxygen species which could generate degenerative diseases. It is proposed that respiration in living eukaryotic organisms is normally controlled by the ?Ψm-independent “allosteric ATP-inhibition of CcO.” Only when the allosteric ATP-inhibition is switched off under stress, respiration is regulated by “respiratory control,” based on ?Ψm according to the Mitchell Theory. 相似文献
14.
Background
In the membrane-bound enzyme cytochrome c oxidase, electron transfer from cytochrome c to O2 is linked to proton uptake from solution to form H2O, resulting in a charge separation across the membrane. In addition, the reaction drives pumping of protons across the membrane.Methods
In this study we have measured voltage changes as a function of pH during reaction of the four-electron reduced cytochrome c oxidase from Rhodobacter sphaeroides with O2. These electrogenic events were measured across membranes containing purified enzyme reconstituted into lipid vesicles.Results
The results show that the pH dependence of voltage changes (primarily associated with proton transfer) during O2 reduction does not match that of the previously studied absorbance changes (primarily associated with electron transfer). Furthermore, the voltage changes decrease with increasing pH.Conclusions
The data indicate that cytochrome c oxidase does not pump protons at high pH (10.5) (or protons are taken from the “wrong” side of the membrane) and that at this pH the net proton-uptake stoichiometry is ∼ 1/2 of that at pH 8. Furthermore, the results provide a basis for interpretation of results from studies of mutant forms of the enzyme.General significance
These results provide new insights into the function of cytochrome c oxidase. 相似文献15.
A rapid separation of the ten nuclearly-encoded subunits of mitochondrial cytochrome c oxidase, and ten out of the eleven subunits of cytochrome bc1, was achieved using a short, 50 mm C18-reversed-phase column. The short column decreased the elution time 4–7 fold while maintaining the same resolution quality. Elution was similar to a previously published protocol, i.e., a water/acetonitrile elution gradient containing trifluoroacetic acid. Isolated subunits were identified by MALDI-TOF. The rapidity of the described method makes it extremely useful for determining the subunit composition of isolated mitochondrial complexes. The method can be used for both analytical and micro-preparative purposes. 相似文献
16.
Megan C. Thielges 《Journal of molecular biology》2009,388(1):159-6931
Cytochrome c has served as a paradigm for the study of protein stability, folding, and molecular evolution, but it remains unclear how these aspects of the protein are related. For example, while the bovine and equine cytochromes c are known to have different stabilities, and possibly different folding mechanisms, it is not known how these differences arise from just three amino acid substitutions introduced during divergence. Using site-selectively incorporated carbon-deuterium bonds, we show that like the equine protein, bovine cytochrome c is induced to unfold by guanidine hydrochloride via a stepwise mechanism, but it does not populate an intermediate as is observed with the equine protein. The increased stability also results in more similar free energies of unfolding observed at different sites within the protein, giving the appearance of a more concerted mechanism. Furthermore, we show that the differences in stability and folding appear to result from a single amino acid substitution that stabilizes a helix by allowing for increased solvation of its N-terminus. 相似文献
17.
Catarina M. Paquete Patrícia M. Pereira Teresa Catarino David. L. Turner Ricardo O. Louro 《BBA》2007,1767(2):178-188
Type I cytochrome c3 is a key protein in the bioenergetic metabolism of Desulfovibrio spp., mediating electron transfer between periplasmic hydrogenase and multihaem cytochromes associated with membrane bound complexes, such as type II cytochrome c3. This work presents the NMR assignment of the haem substituents in type I cytochrome c3 isolated from Desulfovibrio africanus and the thermodynamic and kinetic characterisation of type I and type II cytochromes c3 belonging to the same organism. It is shown that the redox properties of the two proteins allow electrons to be transferred between them in the physiologically relevant direction with the release of energised protons close to the membrane where they can be used by the ATP synthase. 相似文献
18.
Cytochrome c oxidase (CcO) is the terminal enzyme of aerobic respiration. The energy released from the reduction of molecular oxygen to water is used to pump protons across the mitochondrial or bacterial membrane. The pump function introduces a mechanistic requirement of a valve that prevents protons from flowing backwards during the process. It was recently found that Glu-242, a key amino acid in transferring protons to be pumped across the membrane and to the site of oxygen reduction, fulfils the function of such a valve by preventing simultaneous contact to the pump site and to the proton-conducting D-channel (Kaila V.R.I. et al. Proc. Natl. Acad. Sci. USA 105, 2008). Here we have incorporated the valve model into the framework of the reaction mechanism. The function of the Glu valve is studied by exploring how the redox state of the surrounding metal centers, dielectric effects, and membrane potential, affects the energetics and leaks of this valve. Parallels are drawn between the dynamics of Glu-242 and the long-standing obscure difference between the metastable OH and stable O states of the binuclear center. Our model provides a suggestion for why reduction of the former state is coupled to proton translocation while reduction of the latter is not. 相似文献
19.
Cytochrome bd is a terminal quinol:O2 oxidoreductase of respiratory chains of many bacteria. It contains three hemes, b558, b595, and d. The role of heme b595 remains obscure. A CO photolysis/recombination study of the membranes of Escherichia coli containing either wild type cytochrome bd or inactive E445A mutant was performed using nanosecond absorption spectroscopy. We compared photoinduced changes of heme d-CO complex in one-electron-reduced, two-electron-reduced, and fully reduced states of cytochromes bd. The line shape of spectra of photodissociation of one-electron-reduced and two-electron-reduced enzymes is strikingly different from that of the fully reduced enzyme. The difference demonstrates that in the fully reduced enzyme photolysis of CO from heme d perturbs ferrous heme b595 causing loss of an absorption band centered at 435 nm, thus supporting interactions between heme b595 and heme d in the di-heme oxygen-reducing site, in agreement with previous works. Photolyzed CO recombines with the fully reduced enzyme monoexponentially with τ ∼ 12 μs, whereas recombination of CO with one-electron-reduced cytochrome bd shows three kinetic phases, with τ ∼ 14 ns, 14 μs, and 280 μs. The spectra of the absorption changes associated with these components are different in line shape. The 14 ns phase, absent in the fully reduced enzyme, reflects geminate recombination of CO with part of heme d. The 14-μs component reflects bimolecular recombination of CO with heme d and electron backflow from heme d to hemes b in ∼ 4% of the enzyme population. The final, 280-μs component, reflects return of the electron from hemes b to heme d and bimolecular recombination of CO in that population. The fact that even in the two-electron-reduced enzyme, a nanosecond geminate recombination is observed, suggests that namely the redox state of heme b595, and not that of heme b558, controls the pathway(s) by which CO migrates between heme d and the medium. 相似文献
20.
Jason Quenneville 《BBA》2006,1757(8):1035-1046
Cytochrome c oxidase is a redox-driven proton pump which converts atmospheric oxygen to water and couples the oxygen reduction reaction to the creation of a membrane proton gradient. The structure of the enzyme has been solved; however, the mechanism of proton pumping is still poorly understood. Recent calculations from this group indicate that one of the histidine ligands of enzyme's CuB center, His291, may play the role of the pumping element. In this paper, we report on the results of calculations that combined first principles DFT and continuum electrostatics to evaluate the energetics of the key energy generating step of the model—the transfer of the chemical proton to the binuclear center of the enzyme, where the hydroxyl group is converted to water, and the concerted expulsion of the proton from δ-nitrogen of His291 ligand of CuB center. We show that the energy generated in this step is sufficient to push a proton against an electrochemical membrane gradient of about 200 mV. We have also re-calculated the pKa of His291 for an extended model in which the whole Fea3-CuB center with their ligands is treated by DFT. Two different DFT functionals (B3LYP and PBE0), and various dielectric models of the protein have been used in an attempt to estimate potential errors of the calculations. Although current methods of calculations do not allow unambiguous predictions of energetics in proteins within few pKa units, as required in this case, the present calculation provides further support for the proposed His291 model of CcO pump and makes a specific prediction that could be targeted in the experimental test. 相似文献