首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When loaded with high (pathological) levels of Ca2+, mitochondria become swollen and uncoupled as the result of a large non-specific increase in membrane permeability. This process, known as the mitochondrial permeability transition (MPT), is exacerbated by oxidative stress and adenine nucleotide depletion. These conditions match those that a heart experiences during reperfusion following a period of ischaemia. The MPT is caused by the opening of a non-specific pore that can be prevented by sub-micromolar concentrations of cyclosporin A (CsA). A variety of conditions that increase the sensitivity of pore opening to [Ca2+], such as thiol modification, oxidative stress, increased matrix volume and chaotropic agents, all enhance the binding of matrix cyclophilin (CyP) to the inner mitochondrial membrane in a CsA-sensitive manner. In contrast, ADP, membrane potential and low pH decrease the sensitivity of pore opening to [Ca2+] without affecting CyP binding. We present a model of pore opening involving CyP binding to a membrane target protein followed by Ca2+-dependent triggering of a conformational change to induce channel opening. Using the ischaemic/reperfused rat heart we have shown that the mitochondrial pore does not open during ischaemia, but does do so during reperfusion. Recovery of heart during reperfusion is improved in the presence of 0.2 µM CsA, suggesting that the MPT may be critical in the transition from reversible to irreversible reperfusion injury. (Mol Cell Biochem 174: 167–172, 1997)  相似文献   

2.
The combination of calcium overload and oxidative stress opens a non-specific pore in the inner mitochondrial membrane known as the mitochondrial permeability transition pore (MPTP). This uncouples oxidative phosphorylation and compromises intracellular ATP levels eventually leading to necrotic cell death. In cardiac ischemia and reperfusion, as during treatment of a coronary thrombosis or cardiac surgery, the extent of MPTP opening determines the amount of irreversible damage (infarct size). Furthermore, cardioprotection can be achieved by inhibiting MPTP opening either directly with cyclosporin A analogues, or indirectly by reducing oxidative stress. The detailed molecular mechanism of the MPTP remains uncertain. Knockout studies have confirmed important regulatory roles for cyclophilin-D (CyP-D) and the adenine nucleotide translocase (ANT) but not the voltage dependent anion channel. Our own studies have implicated a calcium-triggered conformational change of the mitochondrial phosphate carrier that is facilitated by CyP-D and modulated by the conformation of the ANT.  相似文献   

3.
A prolonged period of ischaemia followed by reperfusion irreversibly damages the heart. Such reperfusion injury (RI) involves opening of the mitochondrial permeability transition pore (MPTP) under the conditions of calcium overload and oxidative stress that accompany reperfusion. Protection from MPTP opening and hence RI can be mediated by ischaemic preconditioning (IP) where the prolonged ischaemic period is preceded by one or more brief (2-5 min) cycles of ischaemia and reperfusion. Following a brief overview of the molecular characterisation and regulation of the MPTP, the proposed mechanisms by which IP reduces pore opening are reviewed including the potential roles for reactive oxygen species (ROS), protein kinase cascades, and mitochondrial potassium channels. It is proposed that IP-mediated inhibition of MPTP opening at reperfusion does not involve direct phosphorylation of mitochondrial proteins, but rather reflects diminished oxidative stress during prolonged ischaemia and reperfusion. This causes less oxidation of critical thiol groups on the MPTP that are known to sensitise pore opening to calcium. The mechanisms by which ROS levels are decreased in the IP hearts during prolonged ischaemia and reperfusion are not known, but appear to require activation of protein kinase Cε, either by receptor-mediated events or through transient increases in ROS during the IP protocol. Other signalling pathways may show cross-talk with this primary mechanism, but we suggest that a role for mitochondrial potassium channels is unlikely. The evidence for their activity in isolated mitochondria and cardiac myocytes is reviewed and the lack of specificity of the pharmacological agents used to implicate them in IP is noted. Some K+ channel openers uncouple mitochondria and others inhibit respiratory chain complexes, and their ability to produce ROS and precondition hearts is mimicked by bona fide uncouplers and respiratory chain inhibitors. IP may also provide continuing protection during reperfusion by preventing a cascade of MPTP-induced ROS production followed by further MPTP opening. This phase of protection may involve survival kinase pathways such as Akt and glycogen synthase kinase 3 (GSK3) either increasing ROS removal or reducing mitochondrial ROS production.  相似文献   

4.
The permeability transition pore complex: another view   总被引:49,自引:0,他引:49  
Halestrap AP  McStay GP  Clarke SJ 《Biochimie》2002,84(2-3):153-166
Mitochondria play a critical role in initiating both apoptotic and necrotic cell death. A major player in this process is the mitochondrial permeability transition pore (MPTP), a non-specific pore, permeant to any molecule of < 1.5 kDa, that opens in the inner mitochondrial membrane under conditions of elevated matrix [Ca(2+)], especially when this is accompanied by oxidative stress and depleted adenine nucleotides. Opening of the MPTP causes massive swelling of mitochondria, rupture of the outer membrane and release of intermembrane components that induce apoptosis. In addition mitochondria become depolarised causing inhibition of oxidative phosphorylation and stimulation of ATP hydrolysis. Pore opening is inhibited by cyclosporin A analogues with the same affinity as they inhibit the peptidyl-prolyl cis-trans isomerase activity of mitochondrial cyclophilin (CyP-D). These data and the observation that different ligands of the adenine nucleotide translocase (ANT) can either stimulate or inhibit pore opening led to the proposal that the MPTP is formed by a Ca-triggered conformational change of the ANT that is facilitated by the binding of CyP-D. Our model is able to explain the mode of action of a wide range of known modulators of the MPTP that exert their effects by changing the binding affinity of the ANT for CyP-D, Ca(2+) or adenine nucleotides. The extensive evidence for this model from our own and other laboratories is presented, including reconstitution studies that demonstrate the minimum configuration of the MPTP to require neither the voltage activated anion channel (VDAC or porin) nor any other outer membrane protein. However, other proteins including Bcl-2, BAX and virus-derived proteins may interact with the ANT to regulate the MPTP. Recent data suggest that oxidative cross-linking of two matrix facing cysteine residues on the ANT (Cys(56) and Cys(159)) plays a key role in regulating the MPTP. Adenine nucleotide binding to the ANT is inhibited by Cys(159) modification whilst oxidation of Cys(56) increases CyP-D binding to the ANT, probably at Pro(61).  相似文献   

5.
We have studied the properties of the permeability transition pore (PTP) in mitochondria from the liver of mice where the Ppif gene encoding for mitochondrial Cyclophilin D (CyP-D) had been inactivated. Mitochondria from Ppif-/- mice had no CyP-D and displayed a striking desensitization of the PTP to Ca2+, in that pore opening required about twice the Ca2+ load necessary to open the pore in strain-matched, wild-type mitochondria. Mitochondria lacking CyP-D were insensitive to Cyclosporin A (CsA), which increased the Ca2+ retention capacity only in mitochondria from wild-type mice. The PTP response to ubiquinone 0, depolarization, pH, adenine nucleotides, and thiol oxidants was similar in mitochondria from wild-type and Ppif-/- mice. These experiments demonstrate that (i) the PTP can form and open in the absence of CyP-D, (ii) that CyP-D represents the target for PTP inhibition by CsA, and (iii) that CyP-D modulates the sensitivity of the PTP to Ca2+ but not its regulation by the proton electrochemical gradient, adenine nucleotides, and oxidative stress. These results have major implications for our current understanding of the PTP and its modulation in vitro and in vivo.  相似文献   

6.
Here we studied the role of mitochondrial permeability transition pore (mPTP) opening in curcumin’s cytotoxicity in melanoma cells. In cultured WM-115 melanoma cells, curcumin induced mitochondrial membrane potential (MPP) decrease, cyclophilin-D (CyPD)-adenine nucleotide translocator 1 (ANT-1) (two mPTP components) mitochondrial association and cytochrome C release, indicating mPTP opening. The mPTP blocker sanglifehrin A (SfA) and ANT-1 siRNA-depletion dramatically inhibited curcumin-induced cytochrome C release and WM-115 cell death. CyPD is required for curcumin-induced melanoma cell death. The CyPD inhibitor cyclosporin A (CsA) or CyPD siRNA-depletion inhibited curcumin-induced WM-115 cell death and apoptosis, while WM-115 cells with CyPD over-expression were hyper-sensitive to curcumin. Finally, we found that C6 ceramide enhanced curcumin-induced cytotoxicity probably through facilitating mPTP opening, while CsA and SfA as well as CyPD and ANT-1 siRNAs alleviated C6 ceramide’s effect on curcumin in WM-115 cells. Together, these results suggest that curcumin-induced melanoma cell death is associated with mPTP opening.  相似文献   

7.
Cyclosporin A (CsA) inhibits opening of the mitochondrial permeability transition pore (MPTP), a critical event in some forms of necrotic and apoptotic cell death, by binding to cyclophilin D (CyP-D) and inhibiting its peptidyl-prolyl cis-trans isomerase (PPIase) activity. Sanglifehrin A (SfA), like CsA, exerts its immunosuppressive action by binding to cyclophilin A but at a different site from CsA, and unlike the latter, SfA does not inhibit calcineurin activity. Here we demonstrate that SfA inhibits the PPIase activity of CyP-D (K(0.5) 2 nm) and acts as a potent inhibitor of MPTP opening under both energized and de-energized conditions. However, unlike CsA, the dose-response curve for inhibition by SfA is sigmoidal rather than hyperbolic, suggesting a multimeric structure for the MPTP with cooperativity between subunits. Furthermore, SfA does not prevent CyP-D binding to submitochondrial particles or detergent-solubilized adenine nucleotide translocase (ANT), implying that CyP-D binding to the ANT does not require PPIase activity but pore opening does. Once bound to the MPTP, SfA is not readily dissociated, and inhibition of pore opening is maintained following extensive washing. To investigate the potential of SfA as an inhibitor of cell death in vivo, we used the Langendorff perfused rat heart. SfA caused a time-dependent inhibition of the MPTP that was maintained on mitochondrial isolation to a greater extent than was CsA inhibition. We demonstrate that SfA, like CsA, improves the recovery of left ventricular developed pressure during reperfusion after 30 min of global ischemia and greatly reduces lactate dehydrogenase release, implying inhibition of necrotic damage. Because SfA does not inhibit calcineurin activity, our data suggest that it may be more desirable than CsA for protecting tissues recovering from ischemic episodes and for studying the role of the MPTP in cell death.  相似文献   

8.
After an episode of myocardial ischemia, opening of the mitochondrial permeability transition pore (mPTP), at the onset of reperfusion, is a critical determinant of myocyte death. We investigated the role of the mPTP as a target for cardioprotection in the human heart. We subjected human atrial tissue, harvested from patients undergoing cardiac surgery, to a period of lethal hypoxia and investigated the effect of suppressing mPTP opening at the onset of reoxygenation. We found that suppressing mPTP opening at the onset of reoxygenation with known mPTP inhibitors cyclosporin A (CsA, 0.2 micromol/l) and sanglifehrin A (SfA, 1.0 micromol/l) 1) improved recovery of baseline contractile function from 29.4 +/- 2.0% under control conditions to 48.7 +/- 2.2% with CsA and 46.1 +/- 2.3% with SfA (P < 0.01) and 2) improved cell survival from 62.8 +/- 5.3% under hypoxic control conditions to 91.4 +/- 4.1% with CsA and 87.2 +/- 6.2% with SfA (P < 0.001). Furthermore, with a cell model in which oxidative stress was used to induce mPTP opening in human atrial myocytes, we demonstrated directly that CsA and SfA mediated their cardioprotective effects by inhibiting mPTP opening, as evidenced by an extension in the time required to induce mPTP opening from 116 +/- 8 s under control conditions to 189 +/- 10 s with CsA and 183 +/- 12 s with SfA (P < 0.01). We report that suppressing mPTP opening at the onset of reoxygenation protects human myocardium against lethal hypoxia-reoxygenation injury. This suggests that, in the human heart, the mPTP is a viable target for cardioprotection.  相似文献   

9.
Dysfunction of mitochondrial calcium homeostasis transforms this cation from a key regulator of mitochondrial function, into a death effector during post-ischemic reperfusion. High intramitochondrial calcium and prevailing cellular conditions favor the opening of the mitochondrial permeability transition pore (mPTP), that induces mitochondrial swelling and provides a mechanism for cytochrome c release, a hallmark signal protein of the mitochondrial apoptosis pathway; indeed, a second mechanism induced by pro-apoptotic BAX protein, could account for cytochrome c leak in the post-ischemic heart. The present study was undertaken to determine which one of these mechanisms triggers the mitochondrial apoptosis pathway in the reperfused heart. To accomplish this goal we prevented the opening of the mPTP in such hearts, by diminishing calcium overload with Ru360, a specific mitochondrial calcium uniporter inhibitor. We found that mPTP opening in reperfused hearts increased along with reperfusion time and concurs with cytochrome c release from mitochondria. Maximal cytochrome c release correlated with mitochondrial dysfunction and complete NAD+ deletion. Fully inserted BAX was detected early after reperfusion and remained unchanged during the evaluated reperfusion times. Remarkably, heart perfusion with Ru360, inhibited mPTP opening and BAX docking into the mitochondrial membranes, suggesting a mPTP upstream role on BAX migration/insertion.  相似文献   

10.
Renal tubular cell injury induced by oxidative stress via mitochondrial collapse is thought to be the initial process of renal calcium crystallization. Mitochondrial collapse is generally caused by mitochondrial permeability transition pore (mPTP) opening, which can be blocked by cyclosporine A (CsA). Definitive evidence for the involvement of mPTP opening in the initial process of renal calcium crystallization, however, is lacking. In this study, we examined the physiological role of mPTP opening in renal calcium crystallization in vitro and in vivo. In the in vitro study, cultured renal tubular cells were exposed to calcium oxalate monohydrate (COM) crystals and treated with CsA (2 μM). COM crystals induced depolarization of the mitochondrial membrane potential and generated oxidative stress as evaluated by Cu-Zn SOD and 4-HNE. Furthermore, the expression of cytochrome c and cleaved caspase 3 was increased and these effects were prevented by CsA. In the in vivo study, Sprague-Dawley rats were administered 1% ethylene glycol (EG) to generate a rat kidney stone model and then treated with CsA (2.5, 5.0, and 10.0 mg/kg/day) for 14 days. EG administration induced renal calcium crystallization, which was prevented by CsA. Mitochondrial collapse was demonstrated by transmission electron microscopy, and oxidative stress was evaluated by measuring Cu-Zn SOD, MDA, and 8-OHdG generated by EG administration, all of which were prevented by CsA. Collectively, our results provide compelling evidence for a role of mPTP opening and its associated mitochondrial collapse, oxidative stress, and activation of the apoptotic pathway in the initial process of renal calcium crystallization.  相似文献   

11.
The pathways activated by post-conditioning may converge on the mitochondria, in particular on the mitochondrial permeability transition pore. We sought to characterize the inhibition status of the mitochondrial permeability transition early after the post-conditioning maneuver and before long reperfusion was established. We observed that post-conditioning maneuvers applied to isolated rat hearts, after a prolonged ischemia and before reperfusion, promoted cardiac mechanical function recovery and maintained mitochondrial integrity. These effects were evaluated by mitochondrial swelling, calcium transport, and NAD+ content measurements; the improvements were established before restoring a long lasting reperfusion period. Mitochondrial integrity was associated with a diminution in oxidative stress, since carbonylation of proteins was prevented and aconitase activity was preserved in the post-conditioned hearts, implying that ROS might mediate mitochondrial dysfunction and mPTP opening. In addition, we found that cytochrome release was significantly abolished in the post-conditioned heart, in contrast with conventionally reperfused hearts.  相似文献   

12.
Cardioprotection by preconditioning is a central issue of current research on heart function. Several reports indicate that preventing the assembly and opening of the mitochondrial permeability transition pore (mPTP) protects the heart against ischemia–reperfusion injury. We have previously reported that brief episodes of tachycardia decrease the infarct size produced by subsequent prolonged occlusion of a coronary artery, indicating that controlled tachycardia is an effective preconditioning manoeuvre. The effects of preconditioning tachycardia on mPTP activity have not been reported. Therefore, in this work we investigated if preconditioning tachycardia protects against calcium-induced mitochondrial swelling, a measure of mPTP activity. We found that tachycardia decreased by 2.5-fold the rate of mitochondrial calcium-induced swelling, a factor that presumably contributes to the cardioprotective effects of tachycardia. The oxidative status of the cell increased after tachycardia, as evidenced by the decrease in the cellular and mitochondrial GSH/GSSG ratio. We also observed increased S-glutathionylation of cyclophilin-D, an essential mPTP component, after tachycardia. This reversible redox modification of cyclophilin-D may account, al least in part, for the decreased mPTP activity produced by preconditioning tachycardia.  相似文献   

13.
The mitochondrial permeability transition pore (MPTP) plays a key role in cell death, yet its molecular identity remains uncertain. Although knock-out studies have confirmed critical roles for both cyclophilin-D (CyP-D) and the adenine nucleotide translocase (ANT), given a strong enough stimulus MPTP opening can occur in the absence of either. Here we provide evidence that the mitochondrial phosphate carrier (PiC) may also be a critical component of the MPTP. Phenylarsine oxide (PAO) was found to activate MPTP opening in the presence of carboxyatractyloside (CAT) that prevents ANT binding to immobilized PAO. Only four proteins from solubilized CAT-treated beef heart inner mitochondrial membranes bound to immobilized PAO, one of which was the PiC. GST-CyP-D pull-down and co-immunoprecipitation studies revealed CsA-sensitive binding of PiC to CyP-D; this increased following diamide treatment. Co-immunoprecipitation of the ANT with the PiC was also observed but was insensitive to CsA treatment. N-ethylmaleimide and ubiquinone analogues (UQ(0) and Ro 68-3400) inhibited phosphate transport into rat liver mitochondria with the same concentration dependence as their inhibition of MPTP opening. UQ(0) and Ro 68-3400 also induced the "m" conformation of the ANT, as does NEM, and reduced the binding of both the PiC and ANT to the PAO column. We propose a model for the MPTP in which a calcium-triggered conformational change of the PiC, facilitated by CyP-D, induces pore opening. An interaction of the PiC with the ANT may enable agents that bind to either transporter to modulate pore opening.  相似文献   

14.
The isothiourea derivative, KB-R7943, inhibits the reverse-mode of the plasma membrane sodium/calcium exchanger and protects against ischemia/reperfusion injury. The mechanism through which KB-R7943 confers protection, however, remains controversial. Recently, KB-R7943 has been shown to inhibit mitochondrial calcium uptake and matrix overload, which may contribute to its protective effects. While using KB-R7943 for this purpose, we find here no evidence that KB-R7943 directly blocks mitochondrial calcium uptake. Rather, we find that KB-R7943 inhibits opening of the mitochondrial permeability transition pore in permeabilized cells and isolated liver mitochondria. Furthermore, we find that this observation correlates with protection against calcium ionophore-induced mitochondrial membrane potential depolarization and cell death, without detrimental effects to basal mitochondrial membrane potential or complex I-dependent mitochondrial respiration. Our data reveal another mechanism through which KB-R7943 may protect against calcium-induced injury, as well as a novel means to inhibit the mitochondrial permeability transition pore.  相似文献   

15.
We prepared GD3-7-aldehyde (GD3-7) and determined its apoptotic potential. GD3-7 proved to be more efficient to induce pro-apoptotic mitochondrial alterations than GD3 when tested on mouse liver mitochondria. GD3-7-induced mitochondrial swelling and depolarization was blocked by cyclosporin A (CsA) supporting a critical role of the permeability transition pore complex (PTPC) during GD3-7-mediated apoptosis. In contrast to GD3, GD3-7 was able to induce channel formation in proteoliposomes containing adenine nucleotide translocase (ANT). This suggests that ANT is the molecular target of GD3-7. Using a specific antiserum, GD3-7 was detected in the lipid extract of the myeloid tumor cell line HL-60 after apoptosis induction, but not in living cells. Therefore, GD3-7 might be a novel mediator of PTPC-dependent apoptosis in cancer cells.  相似文献   

16.
The permeability transition pore (PTP) regulates the structural re-organization of mitochondria in response to changes in cellular Ca2+ and is thought to be an important participant in mitochondrial responses to cell death signals. Although the proteins forming the PTP have yet to be rigorously identified, recent examination of the response of mitochondria, cells and tissues lacking putative components of the PTP have been reported. Studies on mitochondria lacking cyclophilin D (CyP-D) have proved that this protein is the target for PTP inhibition by CsA; yet they have also unequivocally demonstrated that the PTP can form and open in the absence of CyP-D. Likewise, studies in mice lacking the two adenine nucleotide translocators expressed in this species have shown that a functional PTP can form in the absence of these proteins. Thus, the inner mitochondrial membrane components of the PTP remain to be identified, and the absence of CyP-D may not preclude PTP opening in vivo – a finding that questions the conclusion that the PTP participates in cell death pathways only in response to a restricted set of challenges.  相似文献   

17.
Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer's disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD). Reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

18.
Olga Vergun 《BBA》2005,1709(2):127-137
Ca2+-induced mitochondrial depolarization was studied in single isolated rat brain and liver mitochondria. Digital imaging techniques and rhodamine 123 were used for mitochondrial membrane potential measurements. Low Ca2+ concentrations (about 30-100 nM) initiated oscillations of the membrane potential followed by complete depolarization in brain mitochondria. In contrast, liver mitochondria were less sensitive to Ca2+; 20 μM Ca2+ was required to depolarize liver mitochondria. Ca2+ did not initiate oscillatory depolarizations in liver mitochondria, where each individual mitochondrion depolarized abruptly and irreversibly. Adenine nucleotides dramatically reduced the oscillatory depolarization in brain mitochondria and delayed the onset of the depolarization in liver mitochondria. In both type of mitochondria, the stabilizing effect of adenine nucleotides completely abolished by an inhibition of adenine nucleotide translocator function with carboxyatractyloside, but was not sensitive to bongkrekic acid. Inhibitors of mitochondrial permeability transition cyclosporine A and bongkrekic acid also delayed Ca2+-depolarization. We hypothesize that the oscillatory depolarization in brain mitochondria is associated with the transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore, whereas the non-oscillatory depolarization in liver mitochondria is caused by the irreversible opening of the pore.  相似文献   

19.
The mitochondrial permeability transition pore (MPTP) plays a key role in cell death, especially necrosis, and mediates the injury tissues such as the heart and brain experience following ischaemia and reperfusion. However, the molecular identity of the MPTP remains uncertain. Knockout studies have confirmed a role for cyclophilin-D (CyP-D) in pore opening, probably mediated by its peptidyl-prolyl cis-trans isomerase activity that facilitates a conformational change in an inner membrane protein. However, similar knockout studies have cast doubt on the central role of the adenine nucleotide translocase (ANT), previously regarded as a leading contender for the membrane component that forms the transmembrane channel of the MPTP. Here we review the evidence for and against a role for the ANT in MPTP opening and conclude that it usually plays a regulatory role rather than provide the transmembrane pore component. We suggest that the protein fulfilling the latter role is the mitochondrial phosphate carrier (PiC) and summarise recent evidence in support of this proposal. Our data are consistent with a model for the MPTP in which a calcium-triggered conformational change of the PiC, facilitated by CyP-D, induces pore opening. We propose that this is enhanced by an association of the PiC with the "c" conformation of the ANT. Agents that modulate pore opening may act on either or both the PiC and the ANT.  相似文献   

20.
During the aging process, an accumulation of non-heme iron disrupts cellular homeostasis and contributes to the mitochondrial dysfunction typical of various neuromuscular degenerative diseases. Few studies have investigated the effects of iron accumulation on mitochondrial integrity and function in skeletal muscle and liver tissue. Thus, we isolated liver mitochondria (LM), as well as quadriceps-derived subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), from male Fischer 344 x Brown Norway rats at 8, 18, 29 and 37 months of age. Non-heme iron content in SSM, IFM and LM was significantly higher with age, reaching a maximum at 37 months of age. The mitochondrial permeability transition pore (mPTP) was more susceptible to the opening in aged mitochondria containing high levels of iron (i.e. SSM and LM) compared to IFM. Furthermore, mitochondrial RNA oxidation increased significantly with age in SSM and LM, but not in IFM. Levels of mitochondrial RNA oxidation in SSM and LM correlated positively with levels of mitochondrial iron, whereas a significant negative correlation was observed between the maximum Ca(2+) amounts needed to induce mPTP opening and iron contents in SSM, IFM and LM. Overall, our data suggest that age-dependent accumulation of mitochondrial iron may increase mitochondrial dysfunction and oxidative damage,thereby enhancing the susceptibility to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号