首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diatoms possess fucoxanthin chlorophyll proteins (FCP) as light-harvesting systems. These membrane intrinsic proteins bind fucoxanthin as major carotenoid and Chl c as accessory chlorophyll. The relatively high sequence homology to higher plant light-harvesting complex II gave rise to the assumption of a similar overall structure. From centric diatoms like Cyclotella meneghiniana, however, two major FCP complexes can be isolated. FCPa, composed of Fcp2 and Fcp6 subunits, was demonstrated to be trimeric, whereas FCPb, known to contain Fcp5 polypeptides, is of higher oligomeric state. No molecular structure of either complex is available so far. Here we used electron microscopy and single particle analysis to elucidate the overall architecture of FCPb. The complexes are built from trimers as basic unit, assembling into nonameric moieties. The trimer itself is smaller, i.e. more compact than LHCII, but the main structural features are conserved.  相似文献   

2.
Transient absorption spectroscopy has been applied to investigate the energy dissipation mechanisms in the nonameric fucoxanthin-chlorophyll-a,c-binding protein FCPb of the centric diatom Cyclotella meneghiniana. FCPb complexes in their unquenched state were compared with those in two types of quenching environments, namely aggregation-induced quenching by detergent removal, and clustering via incorporation into liposomes. Applying global and target analysis, in combination with a fluorescence lifetime study and annihilation calculations, we were able to resolve two quenching channels in FCPb that involve chlorophyll-a pigments for FCPb exposed to both quenching environments. The fast quenching channel operates on a timescale of tens of picoseconds and exhibits similar spectral signatures as the unquenched state. The slower quenching channel operates on a timescale of tens to hundreds of picoseconds, depending on the degree of quenching, and is characterized by enhanced population of low-energy states between 680 and 710?nm. The results indicate that FCPb is, in principle, able to function as a dissipater of excess energy and can do this in vitro even more efficiently than the homologous FCPa complex, the sole complex involved in fast photoprotection in these organisms. This indicates that when a complex displays photoprotection-related spectral signatures in vitro it does not imply that the complex participates in photoprotection in vivo. We suggest that FCPa is favored over FCPb as the sole energy-regulating complex in diatoms because its composition can more easily establish the balance between light-harvesting and quenching required for efficient photoprotection.  相似文献   

3.
Beer A  Gundermann K  Beckmann J  Büchel C 《Biochemistry》2006,45(43):13046-13053
Two different fucoxanthin-chlorophyll protein complexes (FCP) were purified from the centric diatom Cyclotella meneghiniana and characterized with regard to their polypeptide and pigment composition. Whereas the oligomeric FCPb complex is most probably composed of fcp5 gene products, the trimeric FCPa has subunits encoded by fcp1-3 and fcp6/7. The amount of the latter polypeptide is enhanced when FCPa is isolated from algae grown under HL conditions. This increase in Fcp6/7 polypeptides is accompanied by an increase in the pool of xanthophyll cycle pigments, diadinoxanthin and diatoxanthin, and a concomitant decrease in fucoxanthin content. In addition, the de-epoxidation ratio, i.e., the amount of diatoxanthin in relation to the pool of xanthophyll cycle pigments, is increased by a factor of 2. With regard to fluorescence yield, HL FCPa was quenched in comparison to LL FCPa. This is in accordance with the larger amount of diatoxanthin that is bound, which is supposed to act as a quencher like zeaxanthin in higher plants. Thus, we conclude that the enhanced content of diatoxanthin in FCPa plays a protective role, which is paralleled by a weakened light harvesting function due to a smaller amount of fucoxanthin.  相似文献   

4.
The ultrafast caroteonid to chlorophyll a energy transfer dynamics of the isolated fucoxanthin-chlorophyll proteins FCPa and FCPb from the diatom Cyclotella meneghiniana was investigated in a comprehensive study using transient absorption in the visible and near infrared spectral region as well as static fluorescence spectroscopy. The altered oligomerization state of both antenna systems results in a more efficient energy transfer for FCPa, which is also reflected in the different chlorophyll a fluorescence quantum yields. We therefore assume an increased quenching in the higher oligomers of FCPb. The influence of the carotenoid composition was investigated using FCPa and FCPb samples grown under different light conditions and excitation wavelengths at the blue (500 nm) and red (550 nm) wings of the carotenoid absorption. The different light conditions yield in altered amounts of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Since no significant dynamic changes are observed for high light and low light samples, the contribution of the xanthophyll cycle pigments to the energy transfer is most likely negligible. On the contrary, the observed dynamics change drastically for the different excitation wavelengths. The analyses of the decay associated spectra of FCPb suggest an altered energy transfer pathway. For FCPa even an additional time constant was found after excitation at 500 nm. It is assigned to the intrinsic lifetime of either the xanthophyll cycle carotenoids or more probable the blue absorbing fucoxanthins. Based on our studies we propose a detailed model explaining the different excitation energy transfer pathways in FCPa.  相似文献   

5.
The diatom Cyclotella meneghiniana Kütz. (SAG 1020‐a) was cultured under high‐light (HL) and low‐light (LL) conditions with either high (12 μM) or low (1 μM) iron in the media. Changes in cell morphology, especially cell volume and chloroplast size, were observed in cells grown under low iron. In contrast, HL had a much stronger influence on the photosynthetic apparatus. PSII function was unimpaired under lowered iron supply, but its quantum efficiency and reoxidation rate were reduced under HL conditions. As reported before, HL induced changes in antenna polypeptide composition. Especially the amount of Fcp6, an antenna protein related to LI818 and known to be involved in photoprotection, was increased under HL but was significantly reduced under lowered iron. The diatoxanthin content correlated with the amount of Fcp6 in isolated FCPa antenna complexes and was thus increased under HL and reduced under low iron as well. While the diatoxanthin (Dt) content of whole cells was enhanced under HL, no decrease was observed under lowered iron supply, ruling out the possibility that the decreased amounts in FCPa were due to a hampered diadinoxanthin de‐epoxidase activity under these conditions. Thus, diatoxanthin not bound to FCPa has to be responsible for protection under the slight reduction in iron supply used here.  相似文献   

6.
Thomas Veith 《BBA》2007,1767(12):1428-1435
A photosystem I (PSI)-fucoxanthin chlorophyll protein (FCP) complex with a chlorophyll a/P700 ratio of approximately 200:1 was isolated from the diatom Phaeodactylum tricornutum. Spectroscopic analysis proved that the more tightly bound FCP functions as a light-harvesting complex, actively transferring light energy from its accessory pigments chlorophyll c and fucoxanthin to the PSI core. Using an antibody against all FCP polypeptides of Cyclotella cryptica it could be shown that the polypeptides of the major FCP fraction differ from the FCPs found in the PSI fraction. Since these FCPs are tightly bound to PSI, active in energy transfer, and not found in the main FCP fraction, we suppose them to be PSI specific. Blue Native-PAGE, gel filtration and first electron microscopy studies of the PSI-FCP sample revealed a monomeric complex comparable in size and shape to the PSI-LHCI complex of green algae.  相似文献   

7.
Light drives photosynthesis. In plants it is absorbed by light-harvesting antenna complexes associated with Photosystem I (PSI) and photosystem II (PSII). As PSI and PSII work in series, it is important that the excitation pressure on the two photosystems is balanced. When plants are exposed to illumination that overexcites PSII, a special pool of the major light-harvesting complex LHCII is phosphorylated and moves from PSII to PSI (state 2). If instead PSI is over-excited the LHCII complex is dephosphorylated and moves back to PSII (state 1). Recent findings have suggested that LHCII might also transfer energy to PSI in state 1. In this work we used a combination of biochemistry and (time-resolved) fluorescence spectroscopy to investigate the PSI antenna size in state 1 and state 2 for Arabidopsis thaliana. Our data shows that 0.7 ± 0.1 unphosphorylated LHCII trimers per PSI are present in the stroma lamellae of state-1 plants. Upon transition to state 2 the antenna size of PSI in the stroma membrane increases with phosphorylated LHCIIs to a total of 1.2 ± 0.1 LHCII trimers per PSI. Both phosphorylated and unphosphorylated LHCII function as highly efficient PSI antenna.  相似文献   

8.
Grana-core and grana-margin fragments were obtained from pea (Pisum sativum L.) thylakoids, and both fractions contained photosystem I (PSI) complexes. The yield of these fractions exhibited variations for the plants grown during various periods of the summer season. Low-temperature fluorescence spectra, excitation spectra of long-wave fluorescence, and P700 kinetic characteristics were recorded for these fractions. PSI complexes in central granal regions were associated with PSII and the light-harvesting complexes of PSII, which followed from the excitation spectra of long-wave fluorescence and the kinetic characteristics of P700 light oxidation and dark reduction. The characteristics of the margin regions were changed depending on the fraction yield. If the yield was low, marginal fragments contained mainly PSI complexes. When the yield increased, PSI associates with PSII appeared. A spatial distribution and state of PSI complexes in granal thylakoids are discussed as related to the size and composition of the light-harvesting antenna.  相似文献   

9.
Diatoms, which are primary producers in the oceans, can rapidly switch on/off efficient photoprotection to respond to fast light-intensity changes in moving waters. The corresponding thermal dissipation of excess-absorbed-light energy can be observed as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Fluorescence-induction measurements on Cyclotella meneghiniana diatoms show two NPQ processes: qE1 relaxes rapidly in the dark while qE2 remains present upon switching to darkness and is related to the presence of the xanthophyll-cycle pigment diatoxanthin (Dtx). We performed picosecond fluorescence measurements on cells locked in different (quenching) states, revealing the following sequence of events during full development of NPQ. At first, trimers of light-harvesting complexes (fucoxanthin–chlorophyll a/c proteins), or FCPa, become quenched, while being part of photosystem II (PSII), due to the induced pH gradient across the thylakoid membrane. This is followed by (partial) detachment of FCPa from PSII after which quenching persists. The pH gradient also causes the formation of Dtx which leads to further quenching of isolated PSII cores and some aggregated FCPa. In subsequent darkness, the pH gradient disappears but Dtx remains present and quenching partly pertains. Only in the presence of some light the system completely recovers to the unquenched state.  相似文献   

10.
Saber Hamdani 《BBA》2009,1787(10):1223-1229
The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction with intrinsic domains is amplified resulting in an increased F0.  相似文献   

11.
Action spectra for photosystem II (PSII)-driven oxygen evolution and of photosystem I (PSI)-mediated H2 photoproduction and photoinhibition of respiration were used to determine the participation of chlorophyll (Chl) a/b-binding Pcb proteins in the functions of pigment apparatus of Prochlorothrix hollandica. Comparison of the in situ action spectra with absorption spectra of PSII and PSI complexes isolated from the cyanobacterium Synechocystis 6803 revealed a shoulder at 650 nm that indicated presence of Chl b in the both photosystems of P. hollandica. Fitting of two action spectra to absorption spectrum of the cells showed a chlorophyll ratio of 4:1 in favor of PSI. Effective antenna sizes estimated from photochemical cross-sections of the relevant photoreactions were found to be 192 ± 28 and 139 ± 15 chlorophyll molecules for the competent PSI and PSII reaction centers, respectively. The value for PSI is in a quite good agreement with previous electron microscopy data for isolated Pcb-PSI supercomplexes from P. hollandica that show a trimeric PSI core surrounded by a ring of 18 Pcb subunits. The antenna size of PSII implies that the PSII core dimers are associated with ∼ 14 Pcb light-harvesting proteins, and form the largest known Pcb-PSII supercomplexes.  相似文献   

12.
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.  相似文献   

13.
The stepwise synthesis and assembly of photosynthetic membrane components in the y-1 mutant of Chlamydomonas reinhardi have been previously demonstrated (Ohad 1975 In Membrane Biogenesis, Mitochondria, Chloroplasts and Bacteria, Plenum, pp 279-350). This experimental system was used here in order to investigate the process of formation and interconnection of the energy collecting chlorophylls with the reaction centers of both photosystems I and II. The following measurements were carried out: photosynthetic electron flow at various light intensities, including parts or the entire electron transfer chain; analysis of the kinetics of fluorescence emission at room temperature and fluorescence emission spectra at 77 K, and electrophoretic separation of membrane polypeptides and chlorophyll protein complexes. Based on the data obtained it is concluded that: (a) each photosystem (PSI and PSII) contains, in addition to the reaction center, an interconnecting antenna and a main or light harvesting antenna complex; (b) the formation of the light harvesting complex, interconnecting antenna, and reaction centers for each photosystem can occur independently. (c) the interconnecting antennae link the light harvesting complexes with the respective reaction centers. In their absence, energy transfer between the light harvesting chlorophylls and the reaction centers is inefficient. The formation of the interconnecting antennae and efficient assembly of photosystem components occur simultaneously with the de novo synthesis of chlorophyll and at least three polypeptides, one translated in the cytoplasm and two translated in the chloroplast. The synthesis of these polypeptides was found to be light dependent.  相似文献   

14.
A mild sonication and phase fractionation method has been used to isolate five regions of the thylakoid membrane in order to characterize the functional lateral heterogeneity of photosynthetic reaction centers and light harvesting complexes. Low-temperature fluorescence and absorbance spectra, absorbance cross-section measurements, and picosecond time-resolved fluorescence decay kinetics were used to determine the relative amounts of photosystem II (PSII) and photosystem I (PSI), to determine the relative PSII antenna size, and to characterize the excited-state dynamics of PSI and PSII in each fraction. Marked progressive increases in the proportion of PSI complexes were observed in the following sequence: grana core (BS), whole grana (B3), margins (MA), stroma lamellae (T3), and purified stromal fraction (Y100). PSII antenna size was drastically reduced in the margins of the grana stack and stroma lamellae fractions as compared to the grana. Picosecond time-resolved fluorescence decay kinetics of PSII were characterized by three exponential decay components in the grana fractions, and were found to have only two decay components with slower lifetimes in the stroma. Results are discussed in the framework of existing models of chloroplast thylakoid membrane lateral heterogeneity and the PSII repair cycle. Kinetic modeling of the PSII fluorescence decay kinetics revealed that PSII populations in the stroma and grana margin fractions possess much slower primary charge separation rates and decreased photosynthetic efficiency when compared to PSII populations in the grana stack.  相似文献   

15.
Diatoms are a large group of marine algae that are responsible for about one-quarter of global carbon fixation. Light-harvesting complexes of diatoms are formed by the fucoxanthin chlorophyll a/c proteins and their overall organization around core complexes of photosystems (PSs) I and II is unique in the plant kingdom. Using cryo-electron tomography, we have elucidated the structural organization of PSII and PSI supercomplexes and their spatial segregation in the thylakoid membrane of the model diatom species Thalassiosira pseudonana. 3D sub-volume averaging revealed that the PSII supercomplex of T. pseudonana incorporates a trimeric form of light-harvesting antenna, which differs from the tetrameric antenna observed previously in another diatom, Chaetoceros gracilis. Surprisingly, the organization of the PSI supercomplex is conserved in both diatom species. These results strongly suggest that different diatom classes have various architectures of PSII as an adaptation strategy, whilst a convergent evolution occurred concerning PSI and the overall plastid structure.

The antenna organization of photosystem II in the diatom Thalassiosira pseudonana strongly differs from Chaetoceros gracilis, while the architecture of the photosystem I antenna remains the same.  相似文献   

16.
Prasinophyceae are a broad class of early-branching eukaryotic green algae. These picophytoplankton are found ubiquitously throughout the ocean and contribute considerably to global carbon-fixation. Ostreococcus tauri, as the first sequenced prasinophyte, is a model species for studying the functional evolution of light-harvesting systems in photosynthetic eukaryotes. In this study we isolated and characterized O. tauri pigment-protein complexes. Two photosystem I (PSI) fractions were obtained by sucrose density gradient centrifugation in addition to free light-harvesting complex (LHC) fraction and photosystem II (PSII) core fractions. The smaller PSI fraction contains the PSI core proteins, LHCI, which are conserved in all green plants, Lhcp1, a prasinophyte-specific LHC protein, and the minor, monomeric LHCII proteins CP26 and CP29. The larger PSI fraction contained the same antenna proteins as the smaller, with the addition of Lhca6 and Lhcp2, and a 30% larger absorption cross-section. When O. tauri was grown under high-light conditions, only the smaller PSI fraction was present. The two PSI preparations were also found to be devoid of the far-red chlorophyll fluorescence (715-730 nm), a signature of PSI in oxygenic phototrophs. These unique features of O. tauri PSI may reflect primitive light-harvesting systems in green plants and their adaptation to marine ecosystems. Possible implications for the evolution of the LHC-superfamily in photosynthetic eukaryotes are discussed.  相似文献   

17.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

18.
The effect of protein phosphorylation on electron transportactivities of thylakoids isolated from wheat leaves was investigated.Protein phosphorylation resulted in a reduction in the apparentquantum yield of whole chain and photosystem II (PSII) electrontransport but had no effect on photosystem I (PSI) activity.The affinity of the D1 reaction centre polypeptide of PSII tobind atrazine was diminished upon phosphorylation, however,this did not reduce the light-saturated rate of PSII electrontransport. Phosphorylation also produced an inhibition of thelight-saturated rate of electron transport from water or durohydroquinoneto methyl viologen with no similar effect being observed onthe light-saturated rate of either PSII or PSI alone. This suggeststhat phosphorylation produces an inhibition of electron transportat a site, possibly the cytochrome b6/f complex, between PSIIand PSI. This inhibition of whole-chain electron transport wasalso observed for thylakoids isolated from leaves grown underintermittent light which were deficient in polypeptides belongingto the light-harvesting chlorophyll-protein complex associatedwith photosystem II (LHCII). Consequently, this phenomenon isnot associated with phosphorylation of LCHII polypeptides. Apossible role for cytochrome b6/f complexes in the phosphorylation-inducedinhibition of whole chain electron transport is discussed. Key words: Electron transport, light harvesting, photosystem 2, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

19.
A repressible/inducible chloroplast gene expression system has been used to conditionally inhibit chloroplast protein synthesis in the unicellular alga Chlamydomonas reinhardtii. This system allows one to follow the fate of photosystem II and photosystem I and their antennae upon cessation of chloroplast translation. The main results are that the levels of the PSI core proteins decrease at a slower rate than those of PSII. Amongst the light-harvesting complexes, the decrease of CP26 proceeds at the same rate as for the PSII core proteins whereas it is significantly slower for CP29, and for the antenna complexes of PSI this rate is comprised between that of CP26 and CP29. In marked contrast, the components of trimeric LHCII, the major PSII antenna, persist for several days upon inhibition of chloroplast translation. This system offers new possibilities for investigating the biosynthesis and turnover of individual photosynthetic complexes in the thylakoid membranes. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

20.
A chlorophyll (a + b)--protein complex associated with photosystem I (PSI) was isolated from a larger PSI complex (CPIa) produced by electrophoresis of barley thylakoids solubilized with 300 mM octyl glucoside. It had an apparent Mr of 35,000-43,000 on 7.5% and 10% acrylamide gels respectively, and a chlorophyll a/b ratio of 2.5 +/- 1.5. Denaturation released four polypeptides migrating between 21-24 kDa. They were well separated from the polypeptides of the two photosystem II chlorophyll a + b antenna complexes: LHCII (25-27 kDa) and CP29 (28-29 kDa). In order to study the PSI antenna complex, antibodies were raised against highly purified CPIa. The antigen appeared to be pure when electrophoresed, blotted and reacted with its antiserum, i.e. anti-CPIa detected only the 64-66-kDa CPI apoprotein and the four 21-24 kDa antenna polypeptides. However, when blotted against the whole spectrum of thylakoid proteins, it cross-reacted with both LHCII and CP29 apoproteins. Removal of anti-CPI activity from the anti-CPIa did not affect these cross-reactions, showing that they were not due to antibodies directed against CPI. To show that the same antibody population was reacting with both the photosystem I and photosystem II antenna polypeptides, anti-CPIa was adsorbed onto highly purified CPIa on nitrocellulose. The bound antibody was eluted and used again in a Western blot against whole thylakoid proteins. This selected antibody population showed the same relative strength of reaction with photosystem I and photosystem II antenna polypeptides as the original antibody population had. Similar observations have been made with antibodies to the two photosystem II antenna complexes. We therefore conclude that there are antigenic determinants in common among the chlorophyll a + b binding polypeptides, and predict that there could be amino acid sequence similarities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号