首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oxygen-evolving complex (OEC) of higher plant photosystem II (PSII) consists of an inorganic Mn4Ca cluster and three nuclear-encoded proteins, PsbO, PsbP and PsbQ. In this review, we focus on the assembly of these OEC proteins, and especially on the role of the small intrinsic PSII proteins and recently found “novel” PSII proteins in the assembly process. The numerous auxiliary functions suggested during the past few years for the OEC proteins will likewise be discussed. For example, besides being a manganese-stabilizing protein, PsbO has been found to bind calcium and GTP and possess a carbonic anhydrase activity. In addition, specific roles have been suggested for the two isoforms of the PsbO protein in Arabidopsis thaliana. PsbP and PsbQ seem to play an additional role in the formation of PSII supercomplexes and in grana stacking, besides their originally recognized role in providing a proper calcium and chloride ion concentration for water splitting.  相似文献   

3.
Yang X  Wen X  Gong H  Lu Q  Yang Z  Tang Y  Liang Z  Lu C 《Planta》2007,225(3):719-733
Genetically engineered tobacco (Nicotiana tabacum L.) with the ability to accumulate glycinebetaine was established. The wild type and transgenic plants were exposed to heat treatment (25–50°C) for 4 h in the dark and under growth light intensity (300 μmol m−2 s−1). The analyses of oxygen-evolving activity and chlorophyll fluorescence demonstrated that photosystem II (PSII) in transgenic plants showed higher thermotolerance than in wild type plants in particular when heat stress was performed in the light, suggesting that the accumulation of glycinebetaine leads to increased tolerance to heat-enhanced photoinhibition. This increased tolerance was associated with an improvement on thermostability of the oxygen-evolving complex and the reaction center of PSII. The enhanced tolerance was caused by acceleration of the repair of PSII from heat-enhanced photoinhibition. Under heat stress, there was a significant accumulation of H2O2, O2 and catalytic Fe in wild type plants but this accumulation was much less in transgenic plants. Heat stress significantly decreased the activities of catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase in wild type plants whereas the activities of these enzymes either decreased much less or maintained or even increased in transgenic plants. In addition, heat stress increased the activity of superoxide dismutase in wild type plants but this increase was much greater in transgenic plants. Furthermore, transgenic plants also showed higher content of ascorbate and reduced glutathione than that of wild type plants under heat stress. The results suggest that the increased thermotolerance induced by accumulation of glycinebetaine in vivo was associated with the enhancement of the repair of PSII from heat-enhanced photo inhibition, which might be due to less accumulation of reactive oxygen species in transgenic plants.  相似文献   

4.
The effect of chromium (Cr) on photosystem II (PSII) electron transport and the change of proteins content within PSII complex were investigated. When Lemna gibba was exposed to Cr during 96 h, growth inhibition was found to be associated with an alteration of the PSII electron transport at both PSII oxidizing and reducing sides. Investigation of fluorescence yields at transients K, J, I, and P suggested for Cr inhibitory effect to be located at the oxygen-evolving complex and QA reduction. Those Cr-inhibitory effects were related to the change of the turnover of PSII D1 protein and the alteration of 24 and 33 kDa proteins of the oxygen-evolving complex. The inhibition of the PSII electron transport and the formation of reactive oxygen species induced by Cr were highly correlated with the decrease in the content of D1 protein and the amount of 24 and 33 kDa proteins. Therefore, functional alteration of PSII activity by Cr was closely related with the structural change within PSII complex.  相似文献   

5.
The PsbP protein regulates the binding properties of Ca(2+) and Cl(-), and stabilizes the Mn cluster of photosystem II (PSII); however, the binding site and topology in PSII have yet to be clarified. Here we report that the structure around His-144 and Asp-165 in PsbP, which is suggested to be a metal binding site, has a crucial role for the functional interaction between PsbP and PSII. The mutated PsbP-H144A protein exhibits reduced ability to retain Cl(-) anions in PSII, whereas the D165V mutation does not affect PsbP function. Interestingly, H144A/D165V double mutation suppresses the effect of H144A mutation, suggesting that these residues have a role other than metal binding. FTIR difference spectroscopy suggests that H144A/D165V restores proper interaction with PSII and induces the conformational change around the Mn cluster during the S(1)/S(2) transition. Cross-linking experiments show that the H144A mutation affects the direct interaction between PsbP and the Cyt b(559) α subunit of PSII (the PsbE protein). However, this interaction is restored in the H144A/D165V mutant. In the PsbP structure, His-144 and Asp-165 form a salt bridge. H144A mutation is likely to disrupt this bridge and liberate Asp-165, inhibiting the proper PsbP-PSII interaction. Finally, mass spectrometric analysis has identified the cross-linked sites of PsbP and PsbE as Ala-1 and Glu-57, respectively. Therefore His-144, in the C-terminal domain of PsbP, plays a crucial role in maintaining proper N terminus interaction. These data provide important information about the binding characteristics of PsbP in green plant PSII.  相似文献   

6.
7.
The presence of four photosystem II proteins, CP47, CP43, D1 and D2, was monitored in mutants of Synechocystis sp. PCC 6803 that have modified or inactivated genes for CP47, CP43, or D2. It was observed that: (1) thylakoids from mutants without a functional gene encoding CP47 are also depleted in D1 and D2; (2) inactivation of the gene for CP43 leads to decreased but significant levels of CP47, D1 and D2; (3) deletion of part of both genes encoding D2, together with deletion of part of the CP43-encoding gene causes a complete loss of CP47 and D1; (4) thylakoids from a site-directed mutant in which the His-214 residue of D2 has been replaced by asparagine do not contain detectable photosystem II core proteins. However, in another site-directed mutant, in which His-197 has been replaced by tyrosine, some CP47 as well as breakdown products of CP43, but no D1 and D2, can be detected. These data could indicate a central function of CP47 and D2 in stable assembly of the photosystem II complex. CP43, however, is somewhat less critical for formation of the core complex, although CP43 is required for a physiologically functional photosystem II unit. A possible model for the assembly of the photosystem II core complex is proposed.  相似文献   

8.
The extrinsic subunits of membrane-bound photosystem II (PSII) maintain an essential role in optimizing the water-splitting reaction of the oxygen-evolving complex (OEC), even though they have undergone drastic change during the evolution of oxyphototrophs from symbiotic cyanobacteria to chloroplasts. Two specific extrinsic proteins, PsbP and PsbQ, bind to the lumenal surface of PSII in green plants and maintain OEC conformation and stabilize overall enzymatic function; however, their precise location has not been fully resolved. In this study, PSII-enriched membranes, isolated from spinach, were subjected to chemical cross-linking combined with release-reconstitution experiments. We observed direct interactions between PsbP and PsbE, as well as with PsbR. Intriguingly, PsbP and PsbQ were further linked to the CP26 and CP43 light-harvesting proteins. In addition, two cross-linked sites, between PsbP and PsbR, and that of PsbP and CP26, were identified by tandem mass spectrometry. These data were used to estimate the binding topology and location of PsbP, and the putative positioning of PsbQ and PsbR on the lumenal surface of the PSII. Our model gives new insights into the organization of PSII extrinsic subunits in higher plants and their function in stabilizing the OEC of the PSII supercomplex.  相似文献   

9.
10.
A comparative study of photosystem II complexes isolated from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contains normal stacked thylakoid membranes, and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked grana or essentially unstacked thylakoids with occasional membrane doublings, has been carried out. The corresponding photosystem II complexes had an O2 evolving activity ranging from 290 (for the wild type) to 1100 mol O2 x mg chlorophyll-1 x h-1 (for the mutant Su/su var. Aurea). The reduced photosynthetic unit size was also obvious in the mangenese and cytochromeb559 content. The photosystem II complex from the wild type contained 4 Mn and 1 cytochromeb559 per 200 to 280 chlorophylls, while the corresponding value for the mutant Su/su var. Aurea was 4 Mn and 1 cytochromeb559 per 35 to 60 chlorophylls. We have also examined the polypeptide composition and show that the photosystem II complex from the wild type consisted of polypeptides of 48, 42, 33, 32, 30, 28, 23, 21, 18, 16 and 10 kDa, while the mutant complex mainly contained the polypeptides of 48, 42, 33, 32, 30, 28 and 10 kDa. In the mutant photosystem II complex the light-harvesting chlorophyll protein (peptide of 28 kDa) was reduced by a factor of 5 to 6 as compared to the wild type. With respect to the peptide composition and the photosynthetic unit size, the Triton-solubilized photosystem II complex from the mutant Su/su var. Aurea was very similar to O2 evolving photosystem II reaction center core complexes.Abbreviations PS photosystem - chl chlorophyll - LHCP light-harvesting chlorophyll a/b protein complex  相似文献   

11.
12.
The multisubunit membrane protein complex Photosystem II (PSII) catalyzes one of the key reactions in photosynthesis: the light-driven oxidation of water. Here, we focus on the role of the Psb27 assembly factor, which is involved in biogenesis and repair after light-induced damage of the complex. We show that Psb27 is essential for the survival of cyanobacterial cells grown under stress conditions. The combination of cold stress (30 °C) and high light stress (1000 μmol of photons × m(-2) × s(-1)) led to complete inhibition of growth in a Δpsb27 mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus, whereas wild-type cells continued to grow. Moreover, Psb27-containing PSII complexes became the predominant PSII species in preparations from wild-type cells grown under cold stress. Two different PSII-Psb27 complexes were isolated and characterized in this study. The first complex represents the known monomeric PSII-Psb27 species, which is involved in the assembly of PSII. Additionally, a novel dimeric PSII-Psb27 complex could be allocated in the repair cycle, i.e. in processes after inactivation of PSII, by (15)N pulse-label experiments followed by mass spectrometry analysis. Comparison with the corresponding PSII species from Δpsb27 mutant cells showed that Psb27 prevented the release of manganese from the previously inactivated complex. These results indicate a more complex role of the Psb27 protein within the life cycle of PSII, especially under stress conditions.  相似文献   

13.
The non-bilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant type of lipid in the thylakoid membrane and plays an important role in regulating the structure and function of photosynthetic membrane proteins. In this study, we have reconstituted the isolated major light-harvesting complexes of photosystem II (PSII) (LHCIIb) and a preparation consisting of PSII core complexes and minor LHCII of PSII (PSIICC) into liposomes that consisted of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), with or without MGDG. Transmission electron microscopy and freeze-fracture studies showed unilamellar proteoliposomes, and demonstrated that most of the MGDG is incorporated into bilayer structures. The impact of MGDG on the functional interaction between LHCIIb and PSIICC was investigated by low temperature (77 K) fluorescence emission spectra and the photochemical activity of PSII. The additional incorporation of LHCIIb into liposomes containing PSIICC markedly increased oxygen evolution of PSIICC. Excitation at 480 nm of chlorophyll (Chl) b in LHCIIb stimulated a characteristic fluorescence emission of the Chl a in PSII (684.2 nm), rather than that of the Chl a in LHCIIb (680 nm) in the LHCIIb–PSIICC proteoliposomes, which indicated that the energy was transferred from LHCIIb to PSIICC in liposome membranes. Increasing the percentage of MGDG in the PSIICC–LHCIIb proteoliposomes enhanced the photochemical activity of PSII, due to a more efficient energy transfer from LHCIIb to PSIICC and, thus, an enlarged antenna cross section of PSII.  相似文献   

14.
The latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of ∼ 5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex.  相似文献   

15.
Dmitriy N. Shevela 《BBA》2006,1757(4):253-261
It is shown that the hydrazine-induced transition of the water-oxidizing complex (WOC) to super-reduced S-states depends on the presence of bicarbonate in the medium so that after a 20 min treatment of isolated spinach thylakoids with 3 mM NH2NH2 at 20 °C in the CO2/HCO3-depleted buffer the S-state populations are: 42% of S−3, 42% of S−2, 16% of S−1 and even formal S−4 state is reached, while in the presence of 2 mM NaHCO3, the same treatment produces 30% of S−3, 38% of S−2, and 32% of S−1 and there is no indication of the S−4 state. Bicarbonate requirement for the oxygen-evolving activity, very low in untreated thylakoids, considerably increases upon the transition of the WOC to the super-reduced S-states, and the requirement becomes low again when the WOC returns back to the normal S-states using pre-illumination. The results are discussed as a possible indication of ligation of bicarbonate to manganese ions within the WOC.  相似文献   

16.
The binding site of the extrinsic protein PsbP in plant photosystem II was mapped by pulsed electron-electron double resonance, using mutant spinach PsbP (Pro20Cys, Ser82Cys, Ala111Cys, and Ala186Cys) labeled with 4-maleimido-TEMPO (MSL) spin label. The distances between the spin label and the Tyr160 neutral radical (YD) in PsbD, the D2 subunit of plant photosystem II, were 50.8?±?3.5?Å, 54.9?±?4.0?Å, 57.8?±?4.9?Å, and 58.4?±?14.1?Å, respectively. The geometry inferred from these distances was fitted to the PsbP crystal structure (PDB: 4RTI) to obtain the coordinates of YD relative to PsbP. These coordinates were then fitted under boundary conditions to the structure of cyanobacterial photosystem II (PDB: 4UB6), by rotating on Euler angles centered at fixed YD coordinates. The result proposed two models which show possible acidic amino acid residues in CP43, CP47 and D2 that can bind the basic amino acids Arg48, Lys143, and Lys160 in PsbP.  相似文献   

17.
K. Humbeck  S. Römer  H. Senger 《Planta》1989,179(2):242-250
Dark-grown cells of mutant C-6D of the green alga Scenedesmus obliquus exhibit a high activity of photosystem I (PSI) but lack activity of photosystem II (PSII). These cells contain only the pigment-protein complex CPI, representing the reaction-center of PSI. Only chlorophyll a and precursors of carotenoids (lycopene, neurosporene, -carotene, -zeacarotene) could be detected in dark-grown cells by analysis using high-performance liquid chromatography.Activity of PSII and the corresponding pigment-protein complex, CPa, develop immediately upon transfer to light. Light-harvesting complexes and higher molecular forms of PSI are synthesized only in the later stages of light-induced chloroplast differentiation. During illumination the amounts of carotenoid precursors decrease and carotenes, xanthophylls and chlorophylls a and b are formed. -Carotene and lutein are synthesized without a lag-phase. Their kinetics are similar to those of CPa formation and development of PSII activity. In contrast, all other xanthophylls are synthesized only after a lag-phase of about 30 min.Inhibition of the transformation of precursors into carotenoids by nicotine prevents the light-inducible development of PSII activity and CPa formation. During illumination under anaerobic conditions no xanthophylls are synthesized but high amounts of - and -carotene accumulate. Such cells exhibit no PSII activity and show only traces of CPa. After subsequent transfer to aerobic conditions the xanthophylls are synthesized and simultaneously active PSII units are formed.The results prove that carotenoids are essential components for the assembly of active PSII units. Strong evidence is given that lutein is the absolute necessary prerequisite for this process. Whether -carotene is also an absolute necessary prerequisite for a functioning PSII unit cannot be deduced from our experiments.Abbreviations CP pigment-protein complex - HPLC high-performance liquid chromatography - LHCP light-harvesting chlorophyll-protein complex - PAGE polyacrylamide gel electrophoresis - PCV packed cell volume - PS photosystem  相似文献   

18.
The PsbP-like protein of the cyanobacterium Synechocystis sp. PCC 6803 is a peripheral component of Photosystem II, located at the lumenal side of the thylakoid membrane. Removal of this protein leads to decreased competitive potential of a PsbP-like deletion mutant when grown in a mixture with wild-type cells. Flash-induced oxygen evolution traces of the mutant show a higher probability of misses, correlated with increased amplitudes of the S-states decay in the dark. Thermoluminescence emission traces demonstrate a changed charge recombination pattern in the mutant, the S(3)Q(B)(-) couple becoming the major species instead of the S(2)Q(B)(-). Our data suggest a possible role of the PsbP-like protein in stabilisation of the charge separation in Photosystem II of cyanobacteria through interaction with the Mn cluster.  相似文献   

19.
Tobacco plants grown in vitro were supplied with a mixture of [U-13C6]glucose and unlabelled sucrose via the root system. After 20 days, leaves were harvested and extracted with water. Glucose was isolated from the extract and was analysed by 13C NMR spectroscopy. All 13C signals appeared as complex multiplets due to 13C-13C coupling. The abundance of 21 isotopologous glucose species was determined from the 13C NMR signal integrals by numerical deconvolution using a genetic algorithm. The relative fractions of specific isotopologs in the overall excess of 13C-labelled specimens establish flux contributions via glycolysis/glucogenesis, pentose phosphate pathway, citric acid cycle and Calvin cycle including 13CO2 refixation. The fluxes were modelled and reconstructed in silico by a novel rule-based approach yielding the contributions of circular pathways and the degree of multiple cycling events. The data indicate that the vast majority of the proffered [U-13C6]glucose molecules had been modified by catabolism and subsequent glucogenesis from catabolic fragments, predominantly via passage through the citric acid cycle and the pentose phosphate pathway.  相似文献   

20.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS IIα and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS IIα centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS IIα component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS IIα contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS IIα and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS IIα and PS IIβ to the fluorescence induction kinetics. PS IIα characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号