首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitroxyl (HNO) has received recent and significant interest due to its novel and potentially important pharmacology. However, the chemical/biochemical mechanism(s) responsible for its biological activity remain to be established. Some of the most important biological targets for HNO are thiols and thiol proteins. Consistent with this, it was recently reported that HNO inhibits the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein with a catalytically important cysteine thiol at its active site. Interestingly, it was reported that intracellular GAPDH inhibition occurred without significantly altering the cellular thiol redox status of glutathione. Herein, the nature of this reaction specificity was examined. HNO is found to irreversibly inhibit GAPDH in a manner that can be protected against by one of its substrates, glyceraldehyde-3-phosphate (G-3-P). These results are consistent with the idea that HNO has the ability to react with and oxidize a variety of intracellular thiols and the ease or facility of cellular re-reduction of the thiol targets can determine the target specificity.  相似文献   

2.
3.
Nitroxyl (HNO) was found to inhibit glycolysis in the yeast Saccharomyces cerevisiae. The toxicity of HNO in yeast positively correlated with the dependence of yeast on glycolysis for cellular energy. HNO was found to potently inhibit the crucial glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an effect which is likely to be responsible for the observed inhibition of glycolysis in whole cell preparations. It is proposed that GAPDH inhibition occurs through reaction of HNO with the active site thiolate residue of GAPDH. Significantly, levels of HNO that inhibit GAPDH do not alter the levels or redox status of intracellular glutathione (GSH), indicating that HNO has thiol selectivity. The ability of HNO to inhibit GAPDH in an intracellular environment that contains relatively large concentrations of GSH is an important aspect of HNO pharmacology and possibly, physiology.  相似文献   

4.
Nitroxyl (HNO) possesses unique and potentially important biological/physiological activity that is currently mechanistically ill-defined. Previous work has shown that the likely biological targets for HNO are thiol proteins, oxidized metalloproteins (i.e. ferric heme proteins) and, most likely, selenoproteins. Interestingly, these are the same classes of proteins that interact with H2O2. In fact, these classes of proteins not only react with H2O2, and thus potentially responsible for the signaling actions of H2O2, but are also responsible for the degradation of H2O2. Therefore, it is not unreasonable to speculate that HNO can affect H2O2 degradation by interacting with H2O2-degrading proteins possibly leading to an increase in H2O2-mediated signaling. Moreover, considering the commonality between HNO and H2O2 biological targets, it also seems likely that HNO-mediated signaling can also be due to reactivity at otherwise H2O2-reactive sites. Herein, it is found that HNO does indeed inhibit H2O2 degradation via inhibition of H2O2-metaboilizing proteins. Also, it is found that in a system known to be regulated by H2O2 (T cell activation), HNO behaves similarly to H2O2, indicating that HNO- and H2O2-signaling may be similar and/or intimately related.  相似文献   

5.
Nitroxyl (HNO), the protonated one-electron reduction product of NO, remains an enigmatic reactive nitrogen species. Its chemical reactivity and biological activity are still not completely understood. HNO donors show biological effects different from NO donors. Although HNO reactivity with molecular oxygen is described in the literature, the product of this reaction has not yet been unambiguously identified. Here we report that the decomposition of HNO donors under aerobic conditions in aqueous solutions at physiological pH leads to the formation of peroxynitrite (ONOO) as a major intermediate. We have specifically detected and quantified ONOO with the aid of boronate probes, e.g. coumarin-7-boronic acid or 4-boronobenzyl derivative of fluorescein methyl ester. In addition to the major phenolic products, peroxynitrite-specific minor products of oxidation of boronate probes were detected under these conditions. Using the competition kinetics method and a set of HNO scavengers, the value of the second order rate constant of the HNO reaction with oxygen (k = 1.8 × 104 m−1 s−1) was determined. The rate constant (k = 2 × 104 m−1 s−1) was also determined using kinetic simulations. The kinetic parameters of the reactions of HNO with selected thiols, including cysteine, dithiothreitol, N-acetylcysteine, captopril, bovine and human serum albumins, and hydrogen sulfide, are reported. Biological and cardiovascular implications of nitroxyl reactions are discussed.  相似文献   

6.
《Biomarkers》2013,18(6-7):453-459
Abstract

We demonstrated that urinary heat shock protein of 72 KDa (Hsp72) is a sensitive biomarker for the early detection of acute kidney injury (AKI). However, whether Hsp72 induction during an AKI episode is kidney-specific is unknown, as well as, the degree of Hsp72 stability in urine samples. In rats that underwent bilateral renal ischemia and reperfusion (I/R), Hsp72 levels were evaluated in several tissues and in collected urines under different storage and temperature conditions, as well as in variable numbers of freeze-thaw cycles. The effect of room temperature and five freeze-thaw cycles on urinary Hsp72 levels was also evaluated in urine samples from AKI patients. We found that Hsp72 increased exclusively in the renal cortex of I/R group, emphasizing its performance as an AKI biomarker. Urinary-Hsp72 remained constant at room temperature (48 h), during 9 months of storage and was not affected by five freeze/thaw cycles.  相似文献   

7.
Apelin is the endogenous ligand for the APJ, a member of the G protein coupled receptors family. Apelin/APJ system is widely distributed in central nervous system and peripheral tissues, especially in heart, lung and kidney. Apelin plays important physiological and pathological roles in cardiovascular system, immune system, neuroprotection, etc. This article outlines the protective effect of apelin on ischemia/reperfusion (I/R) injury. Apelin could activate multiple protective mechanisms to prevent heart, brain, liver and kidney I/R injury. Apelin/APJ system may be a promising therapeutic target for ischemic and other related diseases.  相似文献   

8.
9.
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CT/CGRP) family identified from human and other vertebrate tissues. Preprointermedin (preproIMD) can generate a 47 amino acid mature peptide (IMD(1-47)) and a shorter 40 amino acid one (IMD(8-47)) by proteolytic cleavage. Amino acid sequence analysis showed that cleavage sites are located between two basic amino acids at Arg93-Arg94, resulting in the production of preproIMD(95-147), namely IMD(1-53). The present study was designed to observe the effects of IMD(1-53) on cardiac function in ischemia/reperfusion (I/R) injury in isolated rat hearts. Perfusion with high-dose IMD(1-53) gave higher left ventricular systolic pressure (LVSP) and maximal rate of increase and decrease of left ventricle pressure (+/-LVdP/dt(max)), and coronary perfusion flow (CPF) than those of controls. Cardiac I/R induced a marked inhibition of cardiac function and myocardial injury. Reperfusion with IMD(1-53) significantly ameliorated the inhibited cardiac function and bradycardia induced by I/R. Compared with the I/R-treatment alone, IMD(1-53) reperfusion augmented CPF, LVSP, and maximal rate of increase and decrease of left ventricle pressure (+/-LVdP/dt(max)) and decreased LVDP. In addition, reperfusion with IMD(1-53)markedly attenuated the leakage of lactate dehydrogenase and malondialdehyde content in myocardia compared with I/R alone. Reperfusion with IMD(1-53)increased the content of cyclic adenosine monophosphate in comparison with I/R alone. Interestingly, the above IMD(1-53) effects are similar to those of adrenomedullin. These results suggest that IMD(1-53), like adrenomedullin, has cardioprotective effects against myocardial I/R injury.  相似文献   

10.
We used Na(+)-Ca(2+) exchanger (NCX) knockout mice to evaluate the effects of NCX in cardiac function and the infarct size after ischemia/reperfusion injury. The contractile function in NCX KO mice hearts was significantly better than that in wild type (WT) mice hearts after ischemia/reperfusion and the infarct size was significantly small in NCX KO mice hearts compared with that in WT mice hearts. NCX is critically involved in the development of ischemia/reperfusion-induced myocardial injury and therefore the inhibition of NCX function may contribute to cardioprotection against ischemia/reperfusion injury.  相似文献   

11.
The selectivity of MnIII/II porphyrinates toward nitroxyl or nitric oxide donors provides a convenient starting point for the development of new materials for the speciation of these nitrogen-containing redox relatives. In the present report, we describe the insertion of MnIII protoporphyrinate IX in apomyoglobin and its chemical behavior toward HNO or NO donors, either under anaerobic or aerobic conditions. For comparison and discussion, the MnIII porphyrinate, devoid of the protein matrix, was studied in parallel. The MnIII reconstituted globin successfully reacted with the nitroxyl donor trioxodinitrate, while it was unreactive toward NO or NO donors, in good agreement with previously reported data on water soluble MnIII porphyrinates. The estimated association rate constant for the reaction with the nitroxyl donor was of the same order of magnitude for the reconstituted globin and the free porphyrinate, suggesting that the protein environment is not involved in the reaction mechanism. In contrast, the reaction product exhibited enhanced stability in the presence of dioxygen only when the porphyrinate was included in the protein matrix; this feature is ascribed to the role of the distal residues on the metal centered reactivity. This behavior is required for spectroscopic detection under biologically relevant conditions.  相似文献   

12.
Antioxidant and pro-oxidant activities of flavonoids have been reported. We have studied the effects of 18 flavonoids and related phenolic compounds on DNA damage induced by nitric oxide (NO), peroxynitrite, and nitroxyl anion (NO). Similarly to our previous findings with catecholamines and catechol-estrogens, DNA single-strand breakage was induced synergistically when pBR322 plasmid was incubated in the presence of an NO-releasing compound (diethylamine NONOate) and a flavonoid having an ortho-trihydroxyl group in either the B ring (e.g., epigallocatechin gallate) or the A ring (e.g., quercetagetin). Either NO or any of the above flavonoids alone did not induce strand breakage significantly. However, most of the tested flavonoids inhibited the peroxynitrite-mediated formation of 8-nitroguanine in calf-thymus DNA, measured by a new HPLC-electrochemical detection method, as well as the peroxynitrite-induced strand breakage. NO generated from Angeli’s salt caused DNA strand breakage, which was also inhibited by flavonoids but at only high concentrations. On the basis of these findings, we propose that NO and/or peroxynitrite could be responsible for DNA strand breakage induced by NO and a flavonoid having an ortho-trihydroxyl group. Our results indicate that flavonoids have antioxidant properties, but some act as pro-oxidants in the presence of NO.  相似文献   

13.
Nitroxyl (NO/HNO), has been proposed to be one of the NO-derived cytotoxic species. Although the biological effect of nitroxyl is largely unknown, it has been reported to cause DNA breakage and cytotoxicity. We have therefore investigated whether NO/HNO-induced DNA single-strand breakage activates the nuclear nick sensor enzyme poly(ADP-ribose) polymerase (PARP) and whether PARP activation affects the mode of NO/HNO- induced cell death. NO/HNO generated from Angeli’s salt (AS, sodium trioxodinitrate) (0–300 μM) induced DNA single-strand breakage, PARP activation, and a concentration-dependent cytotoxicity in murine thymocytes. AS-induced cell death was also accompanied by decreased mitochondrial membrane potential and increased secondary superoxide production. The cytotoxicity of AS, as measured by propidium iodide uptake, was abolished by electron acceptors potassium ferricyanide, TEMPOL, the intracellular calcium chelator BAPTA-AM, and by PARP inhibitors 3-aminobenzamide (3-AB) and PJ-34. The cytoprotective effect of 3-AB was paralleled by increased output of AS-induced apoptotic parameters such as phosphatidylserine exposure, caspase activation, and DNA fragmentation. No significant increase in tyrosine nitration could be observed in AS-treated thymocytes as opposed to peroxynitrite-treated cells, indicating that tyrosine nitration is not likely to contribute to NO/HNO-induced cytotoxicity. Our results demonstrate that NO/HNO-induced PARP activation shifts the default apoptotic cell death toward necrosis in thymocytes. However, as total PARP inhibition resulted only in 30% cytoprotection, PARP-independent mechanisms dominate NO/HNO-induced cytotoxicity in thymocytes.  相似文献   

14.
Nitroxyl (HNO) is a molecule of significant interest due to its unique pharmacological properties, particularly within the cardiovascular system. A large portion of HNO biological effects can be attributed to its reactivity with protein thiols, where it can generate disulfide bonds. Evidence from studies in erythrocytes suggests that the activity of GLUT1 is enhanced by the formation of an internal disulfide bond. However, there are no reports that document the effects of HNO on glucose uptake. Therefore, we examined the acute effects of Angeli’s salt (AS), a HNO donor, on glucose uptake activity of GLUT1 in L929 fibroblast cells. We report that AS stimulates glucose uptake with a maximum effective concentration of 5.0 mM. An initial 7.2-fold increase occurs within 2 min, which decreases and plateaus to a 4.0-fold activation after 10 min. About 60% of the 4.0-fold activation recovers within 10 min, and 40% remains after an hour. The activation is blocked by the pretreatment of cells with thiol-reactive compounds, iodoacetamide (0.75 mM), cinnamaldehyde (2.0 mM), and phenylarsine oxide (10 μM). The effects of AS are not additive to the stimulatory effects of other acute activators of glucose uptake in L929 cells, such as azide (5 mM), berberine (50 μM), or glucose deprivation. These data suggest that GLUT1 is acutely activated in L929 cells by the formation of a disulfide bond, likely within GLUT1 itself.  相似文献   

15.
糖尿病是一种常见病、多发病,严重威胁着人类的健康。现已明确,糖尿病是冠心病发病的一个重要因素。心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤是临床常见的病理过程,同时是冠心病发病及心肌血运重建治疗过程中的核心环节,如何减轻I/R损伤一直是国际研究热点之一。糖尿病与I/R损伤对心肌都有损害作用,相关研究证明糖尿病能够进一步恶化I/R损伤对心肌的损伤作用。研究表明,缺血预处理(ischemia preconditioning,IPC)可以延缓或减轻心肌I/R损伤,同时,麻醉药预处理(anesthetic induced preconditioning,APC)也具有IPC样的心肌保护作用。其中,七氟烷作为现阶段临床较常用的吸入麻醉药,同样对心肌I/R损伤具有保护作用。本文就七氟烷对糖尿病心肌I/R损伤的影响及其机制做一综述。  相似文献   

16.
脊髓缺血-再灌注损伤(SCII)是一种严重的神经系统损伤,是缺血脊髓组织恢复血液灌注后,脊髓组织的损伤反而加重,表现为其神经损害体征和形态学改变较前更加明显,其发生机制是多因素的综合结果,治疗措施也具有多样性,脊髓缺血后脊髓微血管结构及功能的破坏和脊髓水肿等是脊髓功能损害的主要诱因,至今为止,脊髓缺血再灌注损伤的防治主要有药物及物理治疗等方法,本文作者通过查阅中外文献对脊髓缺血再灌注损伤的特征、发生机制及防治措施作一综述,希望对研究脊髓缺血再灌注损伤防治的学者能有所帮助。  相似文献   

17.
目的探讨构建体外心肌内质网应激(endoplasmic reticulum stress,ERS)模型的方法及实验条件。方法应用Langendorff灌流装置制作大鼠心脏离体缺血/再灌注模型,采用PowerLab系统持续监测血流动力学参数,Western blot检测缺血(停止灌流)不同时间/再灌注120 min后心肌ERS标志性分子糖调节蛋白(GRP)78的表达,并检测C/EBP同源蛋白(CHOP)的表达;逆转录-聚合酶链反应(RT-PCR)检测二者mRNA的表达;体外孵育心肌组织切片,分别应用不同浓度的衣霉素(tunicamycin,Tm)和二硫苏糖醇(dithiothreitol,DTT)处理3 h和6 h,Western-blot检测心肌GRP78及CHOP的表达。结果与对照组相比,离体灌注心脏缺血40 min/再灌注120 min时,心肌GRP78表达最高(P〈0.01),CHOP蛋白、GRP78 mRNA及CHOP mRNA表达均明显升高(P〈0.01,P〈0.05和P〈0.05),同时,各项血流动力学参数受损(均P〈0.01);Tm 10μg/mL和DTT 2 mmol/L孵育心肌组织切片3 h时,GRP78表达较对照组显著升高(均P〈0.001),CHOP表达亦均明显升高(P〈0.05和P〈0.01)。结论使用离体大鼠心脏缺血/再灌注和孵育心肌组织切片的方法,均可成功构建体外心肌ERS模型。  相似文献   

18.
By careful analysis of experimental X-ray ligand crystallographic protein data across several inhibitor series we have discovered a novel, potent and selective series of iNOS inhibitors exemplified by compound 8.  相似文献   

19.
Heteroalicyclic carboxamidines were synthesised and evaluated as inhibitors of nitric oxide synthases. (2R)-2-Pyrrolidinecarboxamidine, in particular, was shown to be a highly potent in vitro (IC50 = 0.12 μM) and selective iNOS inhibitor (>100-fold vs both eNOS and nNOS), with probable binding to the key anchoring glutamate residue and co-ordination to the haem iron.  相似文献   

20.
Neuregulin-1 (NRG-1), an endogenously produced polypeptide, is the ligand of cardiomyocyte ErbB receptors, with cardiovascular protective effects. In the present study, we explored whether the cardioprotective effect of NRG-1 against I/R injury is mediated by inhibiting myocardial endoplasmic reticulum (ER) stress. In vitro, NRG-1 directly inhibited the upregulation of ER stress markers such as glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12 induced by the ER stress inducers tunicamycin or dithiothreitol in both neonatal and adult ventricular myocytes. Attenuating ErbB signals by an ErbB inhibitor AG1478 or ErbB4 knockdown and preincubation with phosphoinositide 3-kinase inhibitors all reversed the effect of NRG-1 inhibiting ER stress in cultured neonatal rat cardiomyocytes. Concurrently, cardiomyocyte ER stress and apoptosis induced by hypoxia-reoxygenation were decreased by NRG-1 treatment in vitro. Furthermore, in an in vivo rat model of myocardium ischemia/reperfusion (I/R), intravenous NRG-1 administration significantly decreased ER stress and myocardial infarct size induced by I/R. NRG-1 could protect the heart against I/R injury by inhibiting myocardial ER stress, which might be mediated by the phosphoinositide 3-kinase/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号