首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on our recent findings that in the diatom Phaeodactylum tricornutum, chlororespiration in periods of prolonged darkness leads to the accumulation of diatoxanthin (DT), we have elaborated in detail the interdependence between the chlororespiratory proton gradient and the activation of diadinoxanthin de-epoxidase (DDE). The data clearly demonstrates that activation of DDE in Phaeodactylum occurs at higher pH-values compared to activation of violaxanthin de-epoxidase (VDE) in higher plants. In thylakoid membranes as well as in enzyme assays with isolated DDE, the de-epoxidation of diadinoxanthin (DD) is efficiently catalyzed at pH 7.2. In comparison, de-epoxidation of violaxanthin (Vx) in spinach thylakoids is observed below pH 6.5. Phaeodactylum thylakoids isolated from high light grown cells, that also contain the pigments of the violaxanthin cycle, show violaxanthin de-epoxidation at higher pH-values, thus suggesting that in Phaeodactylum, one de-epoxidase converts both diadinoxanthin and violaxanthin. We conclude that the activation of DDE at higher pH-values can explain how the low rates of chlororespiratory electron flow, that lead to the build-up of a rather small proton gradient, can induce the observed accumulation of diatoxanthin in the dark. Furthermore, we show that dark activation of diadinoxanthin de-epoxidation is not restricted to Phaeodactylum tricornutum but was also found in another diatom, Cyclotella meneghiana  相似文献   

2.
Diatoms, which are primary producers in the oceans, can rapidly switch on/off efficient photoprotection to respond to fast light-intensity changes in moving waters. The corresponding thermal dissipation of excess-absorbed-light energy can be observed as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Fluorescence-induction measurements on Cyclotella meneghiniana diatoms show two NPQ processes: qE1 relaxes rapidly in the dark while qE2 remains present upon switching to darkness and is related to the presence of the xanthophyll-cycle pigment diatoxanthin (Dtx). We performed picosecond fluorescence measurements on cells locked in different (quenching) states, revealing the following sequence of events during full development of NPQ. At first, trimers of light-harvesting complexes (fucoxanthin–chlorophyll a/c proteins), or FCPa, become quenched, while being part of photosystem II (PSII), due to the induced pH gradient across the thylakoid membrane. This is followed by (partial) detachment of FCPa from PSII after which quenching persists. The pH gradient also causes the formation of Dtx which leads to further quenching of isolated PSII cores and some aggregated FCPa. In subsequent darkness, the pH gradient disappears but Dtx remains present and quenching partly pertains. Only in the presence of some light the system completely recovers to the unquenched state.  相似文献   

3.
The diatom algae, responsible for at least a quarter of the global photosynthetic carbon assimilation in the oceans, are capable of switching on rapid and efficient photoprotection, which helps them cope with the large fluctuations of light intensity in the moving waters. The enhanced dissipation of excess excitation energy becomes visible as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Intact cells of the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum, which show different NPQ induction kinetics under high light illumination, were investigated by picosecond time-resolved fluorescence under dark and NPQ-inducing high light conditions. The fluorescence kinetics revealed that there are two independent sites responsible for NPQ. The first quenching site is located in an FCP antenna system that is functionally detached from both photosystems, while the second quenching site is located in the PSII-attached antenna. Notwithstanding their different npq induction and reversal kinetics, both diatoms showed identical NPQ via both mechanisms in the steady-state. Their fluorescence decays in the dark-adapted states were different, however. A detailed quenching model is proposed for NPQ in diatoms.  相似文献   

4.
Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (QA) of photosystem (PS) II [C. Vernotte, A.L. Etienne, J.-M. Briantais, Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta 545 (1979) 519-527]. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 μs to 5 s). The about 20% lowering of the maximum fluorescence yield FM, observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH2 by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH2 starts getting reoxidised by PS I activity. NAD(P)H-dependent restoration of FM was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl2 that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of FM. Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F0 allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F0 level (Q0) and to compare it with the fractional quenching at the FM level (QM). The experimentally determined Q0/QM ratios were found to be equal to the corresponding F0/FM ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.  相似文献   

5.
An unusual dip (compared to higher plant behaviour under comparable light conditions) in chlorophyll fluorescence induction (FI) at about 0.2-2 s was observed for thalli of several lichen species having Trebouxia species (the most common symbiotic green algae) as their native photobionts and for Trebouxia species cultured separately in nutrient solution. This dip appears after the usual O(J)IP transient at a wide range of excitation light intensities (100-1800 μmol photons m−2 s−1). Simultaneous measurements of FI and 820-nm transmission kinetics (I820) with lichen thalli showed that the decreasing part of the fluorescence dip (0.2-0.4 s) is accompanied by a decrease of I820, i.e., by a reoxidation of electron carriers at photosystem I (PSI), while the subsequent increasing part (0.4-2 s) of the dip is not paralleled by the change in I820. These results were compared with that measured with pea leaves—representatives of higher plants. In pea, PSI started to reoxidize after 2-s excitation. The simultaneous measurements performed with thalli treated with methylviologen (MV), an efficient electron acceptor from PSI, revealed that the narrow P peak in FI of Trebouxia-possessing lichens (i.e., the I-P-dip phase) gradually disappeared with prolonged MV treatment. Thus, the P peak behaves in a similar way as in higher plants where it reflects a traffic jam of electrons induced by a transient block at the acceptor side of PSI. The increasing part of the dip in FI remained unaffected by the addition of MV. We have found that the fluorescence dip is insensitive to antimycin A, rotenone (inhibitors of cyclic electron flow around PSI), and propyl gallate (an inhibitor of plastid terminal oxidase). The 2-h treatment with 5 μM nigericin, an ionophore effectively dissipating the pH-gradient across the thylakoid membrane, did not lead to significant changes either in FI nor I820 kinetics. On the basis of the presented results, we suggest that the decreasing part of the fluorescence dip in FI of Trebouxia-lichens reflects the activation of ferredoxin-NADP+-oxidoreductase or Mehler-peroxidase reaction leading to the fast reoxidation of electron carriers in thylakoid membranes. The increasing part of the dip probably reflects a transient reduction of plastoquinone (PQ) pool that is not associated with cyclic electron flow around PSI. Possible causes of this MV-insensitive PQ reduction are discussed.  相似文献   

6.
Szilvia Z. Tóth 《BBA》2005,1708(2):275-282
The effects of DCMU (3-(3′,4′-dichlorophenyl)-1,1-dimethylurea) on the fluorescence induction transient (OJIP) in higher plants were re-investigated. We found that the initial (F0) and maximum (FM) fluorescence levels of DCMU-treated leaves do not change relative to controls when the treatment is done in complete darkness and DCMU is allowed to diffuse slowly into the leaves either by submersion or by application via the stem. Simultaneous 820 nm transmission measurements (a measure of electron flow through Photosystem I) showed that in the DCMU-treated samples, the plastoquinone pool remained oxidized during the light pulses whereas in uninhibited leaves, the FM level coincided with a fully reduced electron transport chain. The identical FM values with and without DCMU indicate that in intact leaves, the FM value is independent of the redox state of the plastoquinone pool. We also show that (i) the generally observed F0 increase is probably due to the presence of (even very weak) light during the DCMU treatment, (ii) vacuum infiltration of leaf discs leads to a drastic decrease of the fluorescence yield, and in DCMU-treated samples, the FM decreases to the I-level of their control (leaves vacuum infiltrated with 1% ethanol), (iii) and in thylakoid membranes, the addition of DCMU lowers the FM relative to that of a control sample.  相似文献   

7.
The interconversion rate of diadinoxanthin (DD) cycle under high irradiance and subsequent darkness was analyzed using the cultivated centric marine diatom, Chaetoceros gracilis Schütt. A prompt de‐epoxidation from diadinoxanthin to diatoxanthin (DT) occurred immediately after the onset of higher irradiance. The fist‐order rate constant, k, for this de‐epoxidation was 0.1–0.2 min‐1 irrespective of the irradiance. The difference in photon fluence rate lead to the difference of the final amount of DT, leaving the rate constant at almost the same value. After turning off the light, epoxidation from DT to DD occurred. The first‐order constant of epoxidation was much slower than that of de‐epoxidation: 0.005 – 0.009 min‐1. Independent of this epoxidation process, de novo synthesis of DD‐cycle pigments was also observed under the subsequent darkness. Based on these findings, a common nature of the DD‐cycle as a protection mechanism for photo‐systems was demonstrated for C. gracilis.  相似文献   

8.
Abstract: An exponential dynamic light regime with prolonged dark periods (light/dark cycle 8/40 h) was used to simulate deep mixing of algae in natural waters and to investigate the adaptation of the diatom Phaeodactylum tricornutum to these extreme light conditions. After prolonged dark periods Phaeo dactylum cells showed surprisingly high contents of diatoxan-thin, low photosynthetic efficiency and high non-photochemical quenching (NPQ) of chlorophyll fluorescence. Diatoxanthin con centrations and NPQ were low at the beginning of the dark peri od and increased with the duration of the dark incubation. Addi tion of the diadinoxanthin de-epoxidase inhibitor, DTT, prevent ed the formation of diatoxanthin, thereby excluding de novo synthesis of diatoxanthin during the prolonged dark period. Evi dence of chlororespiratory electron flow and the establishment of a diadinoxanthin de-epoxidase activating proton gradient in the dark was derived from two observations. First, uncoupling of electron transport with NH4CI at the beginning of the dark period prevented the development of non-photochemical quenching of chlorophyll fluorescence and the formation of diatoxanthin during the dark period. Second, inhibition of the electron and proton consuming terminal redox component of chlororespiratory electron transport, cytochrome oxidase, by addition of KCN induced stronger NPQ and a higher de-epoxidation state of the xanthophyll cycle. These results strongly indi cate that the activation of diadinoxanthin de-epoxidase in the dark is the consequence of a chlororespiratory proton gradient. We furthermore present evidence that diatoxanthin formed by the chlororespiratory proton gradient has the same efficiency in the mechanism of enhanced heat dissipation as diatoxanthin induced by a light-driven ApH.  相似文献   

9.
The light-dependent control of photosynthetic electron transport from plastoquinol (PQH2) through the cytochrome b6f complex (Cyt b6f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700+ and PC+ was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC+ and P700+ components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b6f to the PSI donors. A significant down-regulation of Cyt b6f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b6f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.  相似文献   

10.
Planktonic diatoms (Bacillariophyceae) have to cope with large fluctuations of light intensity and periodic exposure to high light. After a shift to high light, photoprotective dissipation of excess energy characterized by the nonphotochemical quenching of fluorescence (NPQ) and the concomitant deepoxidation of diadinoxanthin to diatoxanthin (DT) were measured in four different planktonic marine diatoms (Bacillariophyceae): Skeletonema costatum (Greville) Cleve, Cylindrotheca fusiformis Reimann et Lewin, Thalassiosira weissflogii (Grunow) Fryxell et Hasle, and Ditylum brightwellii (West) Grunow in comparison to the model organism Phaeodactylum tricornutum Böhlin. Upon a sudden increase of light intensity, deepoxidation was rapid and de novo synthesis of DT also occurred. In all species, NPQ was linearly related to the amount of DT formed during high light. In this report, we focused on the role of DT in the dissipation of energy that takes place in the light‐harvesting complex. In S. costatum for the same amount of DT, less NPQ was formed than in P. tricornutum and as a consequence the photoprotection of PSII was less efficient. The general features of photoprotection by harmless dissipation of excess energy in planktonic diatoms described here partly explain why diatoms are well adapted to light intensity fluctuations.  相似文献   

11.
Non-photochemical (dark) increases in chlorophyll a fluorescence yield associated with non-photochemical reduction of redox carriers (Fnpr) have been attributed to the reduction of plastoquinone (PQ) related to cyclic electron flow (CEF) around photosystem I. In vivo, this rise in fluorescence is associated with activity of the chloroplast plastoquinone reductase (plastid NAD(P)H:plastoquinone oxidoreductase) complex. In contrast, this signal measured in isolated thylakoids has been attributed to the activity of the protein gradient regulation-5 (PGR5)/PGR5-like (PGRL1)-associated CEF pathway. Here, we report a systematic experimentation on the origin of Fnpr in isolated thylakoids. Addition of NADPH and ferredoxin to isolated spinach thylakoids resulted in the reduction of the PQ pool, but neither its kinetics nor its inhibitor sensitivities matched those of Fnpr. Notably, Fnpr was more rapid than PQ reduction, and completely insensitive to inhibitors of the PSII QB site and oxygen evolving complex as well as inhibitors of the cytochrome b6f complex. We thus conclude that Fnpr in isolated thylakoids is not a result of redox equilibrium with bulk PQ. Redox titrations and fluorescence emission spectra imply that Fnpr is dependent on the reduction of a low potential redox component (Em about − 340 mV) within photosystem II (PSII), and is likely related to earlier observations of low potential variants of QA within a subpopulation of PSII that is directly reducible by ferredoxin. The implications of these results for our understanding of CEF and other photosynthetic processes are discussed.  相似文献   

12.
13.
The alcohol dehydrogenases (ADHs) from Lactobacillus kefir and Rhodococcus sp., which earlier turned out to be suitable for a chemoenzymatic one-pot synthesis with organocatalysts, were immobilized with their cofactors on a commercially available superabsorber based on a literature known protocol. The use of the immobilized ADH from L. kefir in the reduction of acetophenone as a model substrate led to high conversion (>95%) in the first reaction cycle, followed by a slight decrease of conversion in the second reaction cycle. A comparable result was obtained when no cofactor was added although a water rich reaction media was used. The immobilized ADHs also turned out to be suitable catalysts for the diastereoselective reduction of an organocatalytically prepared enantiomerically enriched aldol adduct, leading to high conversion, diastereomeric ratio and enantioselectivity for the resulting 1,3-diols. However, at a lower catalyst and cofactor amount being still sufficient for biotransformations with “free” enzymes the immobilized ADH only showed high conversion and >99% ee for the first reaction cycle whereas a strong decrease of conversion was observed already in the second reaction cycle, thus indicating a significant leaching effect of catalyst and/or cofactor.  相似文献   

14.
In oxygenic photosynthesis, cyclic electron flow around photosystem I denotes the recycling of electrons from stromal electron carriers (reduced nicotinamide adenine dinucleotide phosphate, NADPH, ferredoxin) towards the plastoquinone pool. Whether or not cyclic electron flow operates similarly in Chlamydomonas and plants has been a matter of debate. Here we would like to emphasize that despite the regulatory or metabolic differences that may exist between green algae and plants, the general mechanism of cyclic electron flow seems conserved across species. The most accurate way to describe cyclic electron flow remains to be a redox equilibration model, while the supramolecular reorganization of the thylakoid membrane (state transitions) has little impact on the maximal rate of cyclic electron flow. The maximum capacity of the cyclic pathways is shown to be around 60 electrons transferred per photosystem per second, which is in Chlamydomonas cells treated with 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and placed under anoxic conditions. Part I of this work (aerobic conditions) was published in a previous issue of BBA-Bioenergetics (vol. 1797, pp. 44–51) (Alric et al., 2010).  相似文献   

15.
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress.  相似文献   

16.
The effects of the energization of cells by light and by exogenous glucose on the salt-induced inactivation of the photosynthetic machinery were investigated in the cyanobacterium Synechococcus sp. PCC 7942. The incubation of the cyanobacterial cells in a medium supplemented with 0.5 M NaCl induced a rapid decline with a subsequent slow decline, in the oxygen-evolving activity of Photosystem (PS) II and in the electron-transport activity of PSI. Light and exogenous glucose each protected PSII and PSI against the second phase of the NaCl-induced inactivation. The protective effects of light and glucose were eliminated by an uncoupler of phosphorylation and by lincomycin, an inhibitor of protein synthesis. Light and glucose had similar effects on the NaCl-induced inactivation of Na+/H+ antiporters. After photosynthetic and Na+/H+-antiport activities had been eliminated by the exposure of cells to 0.5 M NaCl in the darkness, both activities were partially restored by light or exogenous glucose. This recovery was prevented by lincomycin. These observations suggest that cellular energization by either photosynthesis or respiration, which is necessary for protein synthesis, is important for the recovery of the photosynthetic machinery and Na+/H+ antiporters from inactivation by a high level of NaCl.  相似文献   

17.
Xian-De Liu 《BBA》2005,1706(3):215-219
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl2, an inhibitor of cytochrome b6f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b6f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

18.
Ma W  Deng Y  Mi H 《Current microbiology》2008,56(2):189-193
A highly active NADPH dehydrogenase supercomplex, which is essential for cyclic electron transport around photosystem I (cyclic PSI) and respiration, was newly identified in cyanobacteria. Synechocystis sp. strain PCC 6803 cells were treated with exogenous glucose (Glc) or 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU); subsequently, active staining of NADPH-nitroblue tetrazolium oxidoreductase, western blot, and the initial rate of P700+ dark reduction were assessed in the cyanobacterium at several time points. The expression and enzyme activity levels of NADPH dehydrogenase supercomplex were gradually inhibited and closely associated with the decrease in the rate of cyclic PSI accompanying the addition of exogenous Glc to the cultures. In contrast, the activity levels were significantly stimulated but did not cause an increase in the rate of cyclic PSI as expected in the presence of DCMU. Since Glc results in the partial reduction of the plastoquinone (PQ) pool while DCMU results in the overoxidation of the PQ pool, the present results demonstrate that the expression and activity of NADPH dehydrogenase supercomplex are under the influence of the redox control of the PQ pool while the operation of cyclic PSI as mediated by this supercomplex requires an appropriate redox poise of the PQ pool.  相似文献   

19.
Chlorophyll a fluorescence rise (O-J-I-P transient) was in literature simulated using models describing reactions occurring solely in photosystem II (PSII) and plastoquinone (PQ) pool as well as using complex models which described, in addition to the above, also subsequent electron transport occurring beyond the PQ pool. However, there is no consistency in general approach how to formulate a kinetic model and how to describe particular reactions occurring even in PSII only. In this work, simple kinetic PSII models are considered always with the same electron carriers and same type of reactions but some reactions are approached in different ways: oxygen evolving complex is considered bound to PSII or “virtually” separated from PSII; exchange of doubly reduced secondary quinone PSII electron acceptor, QB, with PQ molecule from the PQ pool is described by one second order reaction or by two subsequent reactions; and all possible reactions or only those which follow in logical order are considered. By combining all these approaches, eight PSII models are formulated which are used for simulations of the chlorophyll a fluorescence transients. It is shown that the different approaches can lead to qualitatively different results. The approaches are compared with other models found elsewhere in the literature and therefore this work can help the readers to better understand the other models and their results.  相似文献   

20.
In strong illumination, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU)-poisoned chloroplasts exhibit a high yield of chlorophyll fluorescence while P-700 turnover, proton uptake, and phosphorylation are inhibited and a pH gradient is undetectable. When 10 μM N-methylphenazonium methosulfate (PMS) is included, the fluorescence yield in light is substantially reduced, and when 100 μM ascorbate is also included, the yield is diminished approximately to the level in darkness. Only very slight increases in P-700 turnover and proton uptake (but no detectable pH gradient) accompany the fluorescence yield decline.When 10 μM PMS and 15 mM ascorbate are added to poisoned chloroplasts (the oxygen concentration being greatly reduced), P-700 turnover, proton uptake, the pH gradient and phosphorylation all reach high levels. In this case, the yield of chlorophyll fluorescence is low and is the same in both light and dark. Further addition of an uncoupler eliminates proton uptake, the pH gradient and phosphorylation but does not significantly elevate the fluorescence yield. From these observations we suggest that, in DCMU-poisoned chloroplasts, the fluorescence quenching with PMS occurs by a mechanism unrelated to the generation of a phosphorylation potential.With chloroplasts unpoisoned by DCMU, PMS quenches fluorescence and considerably stimulates proton uptake, the pH gradient and phosphorylation. However, in this case, PMS serves to restore net electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号