首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The pathway by which glutamate is degraded as a carbon source has not previously been elucidated, but enzymatic analysis of Rhizobium meliloti CMF1 indicated that both glutamate dehydrogenase (GDH) and gamma-aminobutyrate (GABA) bypass activities were present in free living cells. However, when similar studies were performed on R. meliloti CMF1 bacteroids, isolated from alfalfa nodules, only GABA bypass activities were detectable. Both GDH and GABA bypass activities were influenced by the carbon source provided, with maximum activities being detected when glutamate was present as sole carbon and nitrogen source. Addition of a second carbon source, such as succinate, to the growth medium did not influence GDH activity but substantially decreased levels of the first enzyme of the GABA bypass, glutamate decarboxylase (GDC). Cyclic adenosine 3′5′-monophosphate (cAMP) failed to increase GDC activities in R. meliloti CMF1 cells grown in the presence of an additional carbon source. It is proposed that the GABA bypass is a major mechanism of glutamate carbon degradation in R. meliloti CMF1, a system whose enzymatic activities are influenced by the nature of the carbon source present in the growth environment.  相似文献   

2.
Bacillus fastidiosus was able to grow on glycerol as a carbon source when allantoin or urate was used as nitrogen source. The primary assimilatory enzyme for glycerol was glycerol kinase; glycerol dehydrogenase could not be detected. The glycerol kinase activity was increased 30-fold in allantoin/glycerol-grown cells as compared to alantoin-grown cells. Under both growth conditions high levels of glutamate dehydrogenase were found. Glutamine synthetase and glutamate synthase activities could not be demonstrated, while low levels of alanine dehydrogenase were present. It is concluded that B. fastidiosus assimilates ammonia by the NADP-dependent glutamate dehydrogenase.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

3.
4.
Regulation of glutamate dehydrogenase in Bacillus subtilis.   总被引:5,自引:5,他引:0       下载免费PDF全文
The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression.  相似文献   

5.
Sodium-Stimulated Transport of Glutamate in Escherichia coli   总被引:19,自引:15,他引:4       下载免费PDF全文
Wild-type Escherichia coli B grew poorly on glutamate as the sole carbon source, except at very high concentrations of the amino acid. The addition of sodium ion markedly stimulated the growth. It had the same effect in a mutant of E. coli B selected for the ability to grow at low glutamate concentrations. Sodium ion also potentiated growth inhibition by analogues of glutamate. The uptake of glutamate by nongrowing cells of the mutant was markedly stimulated by sodium ion in the presence of an energy source, chloramphenicol, and arsenite, which retarded glutamate degradation.  相似文献   

6.
7.
The effect of an additional carbon source, lactate, on Penicillium camembertii growth on glutamate as both carbon and nitrogen sources was examined. Glutamate (and lactate) was present in excess in both media. Throughout the whole culture, similar growth time-courses were recorded on both media, indicating the absence of a lactate effect on growth. During the first part of growth, corresponding to an increasing amount of viable biomass, the rate of glutamate consumption remained high, as well as the related ammonium production, indicating its use as a carbon source in addition to being nitrogen source. The low growth rates recorded during the last part of growth resulted in low glutamate consumption, while lactate consumption continued mainly by a maintenance mechanism for the energy supply. A clear differentiation appeared therefore between the carbon source and the energy source: glutamate was mainly used as C source (and N source) for biosynthesis, while lactate was mainly assimilated for energy supply. Carbon and nitrogen yield examinations confirmed this result. Indeed, the C/N ratio found for P. camembertii cellular material (8.14) was about twice that of glutamate (4.29). From this, about half of the available nitrogen was used for biomass formation during growth on glutamate-lactate based medium, as experimentally confirmed (constant yield nitrogen from biomass on nitrogen from glutamate was found (0.49), while the excess nitrogen was released as ammonium). The constant and close to unit (0.99) yield carbon from CO2 on carbon from lactate, also recorded during growth on glutamate-lactate based medium, confirmed that lactate was mainly used as an energy source.  相似文献   

8.
Summary The degradation of pentachlorophenol (PCP) by a Flavobacterium sp. was investigated by inoculating induced cells into cultures containing PCP alone or PCP and glutamate as carbon sources. Using PCP as the sole carbon source, the degradation activity increased with PCP concentration. However, a lag phase was observed and this lag was more pronounced at higher PCP concentrations. Exposure of cells to higher PCP concentrations during induction did not reduce the lag. The presence of glutamate reduced the lag in PCP degradation. Such an elimination of the lag phase appears to be due to maintaining cell viability with the presence of glutamate. Offprint requests to: W.-S. Hu  相似文献   

9.
为实现重组大肠杆菌以葡萄糖为唯一碳源合成均聚的P( 4HB) ,PCR扩增大肠杆菌编码谷氨酸:琥珀酰半缩醛转氨基酶基因(gabT) ,谷氨酸脱羧酶基因(gadA)以及富养罗尔斯通氏菌(Ralstoniaeutropha)H16的4_羟基丁酸脱氢酶基因(gadB) ,并组装到携带富养罗尔斯通氏菌(Ralstoniaeutropha)H16的PHA聚合酶基因(phaC)和克氏梭菌(Clostridiumkluyveri)中编码4_羟基丁酸:CoA转移酶基因(orfZ)的重组质粒pKESS5 3上,形成一个大的操纵元。携带重组质粒的大肠杆菌获得从三羧酸循环的中间物———α_酮戊二酸到P( 4HB)的代谢途径。结果表明,重组大肠杆菌可以以葡萄糖为唯一碳源合成均聚的P( 4HB) ,当向以葡萄糖为唯一碳源的无机培养基添加蛋白胨、酵母提取物、酪蛋白水解物时,P( 4HB)的含量可以高达菌体干重的30 %。  相似文献   

10.
The effect of glutamine replacement by glutamate and the balance between glutamate and glucose metabolism on the redistribution of t-PA-producing recombinant CHO cells metabolism is studied in a series of glucose shift down and shift up experiments in continuous culture. These experiments reveal the existence of multiple steady states, and experimental data are used to perform metabolic flux analysis to gain a better insight into cellular metabolism and its redistribution. Regulation of glucose feed rate promotes a higher efficiency of glucose and nitrogen source utilization, with lower production of metabolic byproducts, but this reduces t-PA specific production rate. This reduction under glucose limitation can be attributed to the fact that the cells are forced to efficiently utilize the carbon and energy source for growth, impairing the production of dispensable metabolites. It is, therefore, the combination of growth rate and carbon and energy source availability that determines the level of t-PA production in continuous culture.  相似文献   

11.
Summary Hydrogenomonas H 16 synthetized two chromatographically distinct forms of glutamate dehydrogenase which differed in their thermolability. One glutamate dehydrogenase utilized NAD, the other NADP as a coenzyme.Low specific activity of NAD-dependent glutamate dehydrogenase was found in cells grown with glutamate as sole nitrogen source or in cells grown with a high concentration of ammonium ions. In the presence of a low concentration of ammonium ions or in a nitrogen free medium, the specific activity of the NAD-dependent enzyme increased. Corresponding to the formation of the NAD-dependent glutamate dehydrogenase the enzyme glutamine synthetase was synthesized. The ratio of NAD-dependent glutamate dehydrogenase to glutamine synthetase activity differed only slightly in cells grown with different nitrogen and carbon sources.The NADP-dependent glutamate dehydrogenase was found in high specific activity in cells grown with an excess of ammonium ions. Under nitrogen starvation the formation of the NADP-dependent glutamate dehydrogenase ceased and the enzyme activity decreased.  相似文献   

12.
The active uptake system for glutamate in Corynebacterium glutamicum is inducible by growth on glutamate as sole energy and carbon source and is also susceptible to catabolite repression by glucose. The basic level of uptake activity is low in glucose-grown cells (1.5 nmol.mg dry mass-1.min-1), it is intermediate when acetate is the carbon source (3.8 nmol.mg dry mass-1.min-1) and becomes fully induced by glutamate (15 nmol.mg dry mass-1.min-1). In all cases the uptake has, except for different Vmax values, identical kinetic and energetic properties, and is characterized by a low apparent Km value of 0.5-1.3 microM and by high substrate specificity. The transported substrate species is the deprotonated form which can also be concluded from the extremely high pH optimum of transport above pH 9. Glutamate uptake in cells grown in media with low K+ concentration is not influenced by external Na+ but is drastically stimulated by addition of K+. Stimulation by K+ could be separated into two different mechanisms. (a) Addition of K+ increases the internal pH, thereby stimulating glutamate uptake which is regulated by the internal pH in C. glutamicum. The apparent pK of the internal 'pH switch' is 6.6; below this value, uptake of glutamate is inhibited. (b) Internal K+ also directly promotes glutamate uptake. Effective uptake of glutamate can be observed only when the cytosolic K+ concentration exceeds a threshold value of about 200 mM. Stimulation of glutamate uptake by external K+ is not due to functional coupling of K+ and glutamate transport but reveals the necessity to replenish the internal K+ pool.  相似文献   

13.
The location of the Escherichia coli K-12 genes determining or regulating glutamate transport, and the location of the gene determining glutamate decarboxylase synthesis, were established by conjugation. The ability to grow on glutamate as the sole source of carbon and energy was used to select for glutamate transport recombinants. Two genes determining the ability to grow on glutamate as the sole source of carbon and energy were mapped. One (gltC) is located near mtl (mannitol), and the other (gltH) appears to be located between the gal (galactose) and trp (tryptophan) loci. The glutamate decarboxylase gene (gad) is strongly linked to gltC. The gltC(+) recombinants grow on glutamate much faster and accumulate this amino acid to a greater extent than do the gltH(+) recombinants. The gltH(+) gene functioned only in one female strain (P678), whereas the gltC gene functioned in all the female strains tested (P678, C600, W1).  相似文献   

14.
15.
The transition from yeast-like cells to chlamydospores ofAureobasidium pullulans can be induced by growing the microorganism on a glucose medium with a limiting nitrogen source and a low buffer capacity. When glucose is used as the carbon source, a concentration higher than 3% (w/v) is required to induce the transition. On the other hand, growth limiting concentrations of the N source (ammonium sulphate) are not required, and higher concentrations actually stimulate the appearance of chlamydospores. Other N sources, such as glutamate or ammonium phosphate, do not induce the transition from yeast-like cells to chlamydospores.  相似文献   

16.
Utilization of arginine by Klebsiella aerogenes.   总被引:9,自引:9,他引:0       下载免费PDF全文
Klebsiella aerogenes utilized arginine as the sole source of carbon or nitrogen for growth. Arginine was degraded to 2-ketoglutarate and not to succinate, since a citrate synthaseless mutant grows on arginine as the only nitrogen source. When glucose was the energy source, all four nitrogen atoms of arginine were utilized. Three of them apparently did not pass through ammonia but were transferred by transamination, since a mutant unable to produce glutamate by glutamate synthase or glutamate dehydrogenase utilized three of four nitrogen atoms of arginine. Urea was not involved as intermediate, since a unreaseless mutant did not accumulate urea and grew on arginine as efficiently as the wild-type strain. Ornithine appeared to be an intermediate, because cells grown either on glucose and arginine or arginine alone could convert arginine in the presence of hydroxylamine to ornithine. This indicates that an amidinotransferase is the initiating enzyme of arginine breakdown. In addition, the cells contained a transaminase specific for ornithine. In contrast to the hydroxylamine-dependent reaction, this activity could be demonstrated in extracts. The arginine-utilizing system (aut) is apparently controlled like the enzymes responsible for the degradation of histidine (hut) through induction, catabolite repression, and activation by glutamine synthetase.  相似文献   

17.
Activating enzyme (AE) is responsible for the in vitro activation of inactive Fe protein of nitrogenase from Rhodospirillum rubrum cells cultured anaerobically with glutamate as the N source. The expression of Fe protein and AE was examined in R. rubrum cultured photosynthetically or aerobically on media containing malate as the carbon source. One of the following N sources was used in each culture: glutamate, glutamine, limiting ammonia, high ammonia, glutamate plus histidine, and high ammonia plus histidine. Chromatophores from every culture exhibited AE activity; activity was highest in glutamate-grown cells. Fe protein was observed by rocket immunoelectrophoresis in cultures with nitrogenase activity. Several Nif-, Gln-, and His- mutants of R. rubrum were assayed for AE activity, nitrogenase activity, and Fe protein. Every mutant expressed AE activity, and Fe protein was observed in those cultures with nitrogenase activity. AE from every preparation was O2 labile, and each O2-denatured AE preparation inhibited activation by active AE.  相似文献   

18.
A mutation, amdT19, which leads to inability to grow on glutamate as the sole nitrogen source but does not affect growth on glutamate as the sole source of carbon and nitrogen, is shown to result in increased repression of glutamate uptake by glucose. An allelic mutation, amdT102, results in insensitivity to glucose repression. Glutamate uptake is still sensitive to NH4+ repression in the presence of glucose in these strains. Starvation for a carbon source leads to relief of NH4+ repression.  相似文献   

19.
4-Aminobutyrate aminotransferase (GABAT) from Pseudomonas aeruginosa was purified 64-fold to apparent electrophoretic homogeneity from cells grown with 4-aminobutyrate as the only source of carbon and nitrogen. Purified GABAT catalyzed the transamination of 4-aminobutyrate, N2-acetyl-L-ornithine, L-ornithine, putrescine, L-lysine, and cadaverine with 2-oxoglutarate (listed in order of decreasing activity). The enzyme is induced in cells grown on 4-guanidinobutyrate, 4-aminobutyrate, or putrescine as the only carbon and nitrogen source. Cells grown on arginine or on glutamate contained low levels of the enzyme. The regulation of the synthesis of GABAT as well as the properties of the mutant with an inactive N2-acetyl-L-ornithin 5-aminotransferase suggest that GABAT functions in the biosynthesis of arginine by convertine N2-acetyl-L-glutamate 5-semialdehyde to N2-acetyl-Lornithine as well as in catabolic reactions during growth on putrescine or 4-guanidinobutyrate but not during growth on arginine.  相似文献   

20.
Pseudomonas aeruginosa can utilize arginine and other amino acids as both carbon and nitrogen sources. Earlier studies have shown that the specific porin OprD facilitates the diffusion of basic amino acids as well as the structurally analogous beta-lactam antibiotic imipenem. The studies reported here showed that the expression of OprD was strongly induced when arginine, histidine, glutamate, or alanine served as the sole source of carbon. The addition of succinate exerted a negative effect on induction of oprD, likely due to catabolite repression. The arginine-mediated induction was dependent on the regulatory protein ArgR, and binding of purified ArgR to its operator upstream of the oprD gene was demonstrated by gel mobility shift and DNase assays. The expression of OprD induced by glutamate as the carbon source, however, was independent of ArgR, indicating the presence of more than a single activation mechanism. In addition, it was observed that the levels of OprD responded strongly to glutamate and alanine as the sole sources of nitrogen. Thus, that the expression of oprD is linked to both carbon and nitrogen metabolism of Pseudomonas aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号