共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Internal AU-rich elements modulate activity of two competing 3' splice sites in plant nuclei 总被引:3,自引:1,他引:3
Hanne Merritt rew J. McCullough Mary A. Schuler 《The Plant journal : for cell and molecular biology》1997,12(4):937-943
In vivo analyses using an autonomously replicating Agrobacterium/geminivirus vector have enabled identification of AU-rich intronic elements critical for 5′ and 3′ splice site selection in dicot plant nuclei and development of a model for pre-mRNA intron recognition in plant nuclei. To determine the minimal length, spacing and nucleotide compositions constraining recognition of the 3′ boundary of an intron, two or four nucleotide substitutions have been introduced into the two AU-rich elements located between 50 and 66 nucleotides upstream from the 3′ splice site of maize Adh 1 intron 3. In each case tested, substitutions in the distal left element (?62 to ?66) inactivate the downstream 3′ splice site at ?1 more effectively than substitutions in the proximal right element (?50 to ?55). Guanosine or cytosine substitutions in either element reduce recognition of the ?1 site significantly; adenosine substitutions have a less severe effect. Mutations in both of these AU elements additively block recognition of the downstream 3′ splice site. The strong additive effect of these mutations supports a model in which short sets of AU islands bind interactive factors and cooperatively modulate usage of the downstream splice site. In contrast to the uridine requirements documented for the 3′ terminus of plant introns, adenosines are partially interchangeable with uridines within this internal region of the intron. 相似文献
4.
5.
6.
To investigate soluble factors involved in pre-messenger RNA splicing we have fractionated nuclear extract by simple centrifugation to produce a supernatant pellet pair. Factors larger than 15S including U2, U4, U5, and U6 snRNPs fractionate with the pellet; U1 snRNPs distribute equally in pellet and supernatant. Each fraction is individually incompetent for splicing and spliceosome assembly; mixing restores wild type activity and assembly. The pellet fraction directs an aberrant assembly pathway in which proper 3', but improper 5' splice site recognition occurs. Complexes formed with the pellet fraction are distinguishable from wild-type complexes using native gel electrophoresis. Pellet complexes contain U1 snRNP antigens and their formation requires ATP, U1 snRNPs, U2 snRNPs, and sequences at the 3' end of the intron - properties shared with the initial steps of normal assembly and directed by sequences at the 3' end of the intron. In contrast, pellet complex assembly shows no dependence on the presence of a 5' splice junction within precursor RNA. Furthermore, binding of factors to the 5' splice junction is deficient in pellet assemblies. Thus, the pellet lacks a factor required for proper recognition of 5' splice sites. This factor can be supplied by the supernatant. Complementation occurs when supernatant U1 RNA is destroyed, suggesting that the supernatant factor recognizing 5' splice sites is not U1 snRNPs. 相似文献
7.
Processing of chimeric introns in dicot plants: evidence for a close cooperation between 5'' and 3'' splice sites. 总被引:1,自引:0,他引:1 下载免费PDF全文
Splice sites of vertebrate introns are generally not recognized in plant cells. Several lines of evidences have led to the proposal that the mechanism of 3' splice site selection differs in plants and animals (K. Wiebauer, J.J. Herrero, and W. Filipowicz, Mol. Cell. Biol. 8:2042-2051, 1988). To gain a better insight into the mechanistic differences between plant and animal splicing, we constructed chimeric introns consisting partly of dicotyledonous plant and partly of animal intron sequences. Splicing of these chimeric introns was analyzed in transiently transfected tobacco protoplasts. The results show that there are no principal sequence or structural differences between the 3' splice regions of plants and animals. Furthermore, evidence is provided that cooperation between 5' and 3' splice sites takes place and influences their mutual selection. 相似文献
8.
9.
10.
11.
Requirement of a polypyrimidine tract for trans-splicing in trypanosomes: discriminating the PARP promoter from the immediately adjacent 3'' splice acceptor site. 总被引:12,自引:1,他引:12 下载免费PDF全文
We studied sequence requirements for trans-splicing at the 3' splice acceptor site of a procyclic acidic repetitive protein (PARP) coding gene in trypanosomes. In transient CAT transfection assays with linker scanning (LS) mutants in a PARP promoter--3' splice acceptor site--CAT construct, minor differences in the sequence composition of the polypyrimidine tract (nt -36 to -5 with respect to the 3' splice acceptor site) severely affected the CAT activity. Analysis of steady-state CAT RNA in stably transformed trypanosomes revealed that the LS mutations had indeed affected the pre-mRNA splicing efficiency. The data indicate that mini-exon addition is not required simply for maturation of polycistronic pre-mRNA but is also essential for the generation of functional mRNA from monocistronic genes, since unspliced monocistronic pre-mRNA did not accumulate or allow synthesis of CAT. We postulate that mini-exon addition at polycistronically transcribed genes, which can have drastically different polypyrimidine tracts at each of their 3' splice acceptor sites, can occur with different efficiencies for each gene of the array thus affecting mRNA abundance. 相似文献
12.
A conserved 3' splice site YAG is essential for the second step of pre-mRNA splicing but no trans-acting factor recognizing this sequence has been found. A direct, non-Watson-Crick interaction between the intron terminal nucleotides was suggested to affect YAG selection. The mechanism of YAG recognition was proposed to involve 5' to 3' scanning originating from the branchpoint or the polypyrimidine tract. We have constructed a yeast intron harbouring two closely spaced 3' splice sites. Preferential selection of a wild-type site over mutant ones indicated that the two sites are competing. For two identical sequences, the proximal site is selected. As previously observed, an A at the first intron nucleotide spliced most efficiently with a 3' splice site UAC. In this context, UAA or UAU were also more efficient 3' splice sites than UAG and competed more efficiently than the wild-type sequence with a 3' splice site UAC. We observed that a U at the first intron nucleotide is used for splicing in combination with 3' splice sites UAG, UAA or UAU. Our data indicate that the 3' splice site is not primarily selected through an interaction with the first intron nucleotide. Selection of the 3' splice site depends critically on its distance from the branchpoint but does not occur by a simple leaky scanning mechanism. 相似文献
13.
Recognition of 5' splice points by group I and group II self-splicing introns involves the interaction of exon sequences--directly preceding the 5' splice site--with intronic sequence elements. We show here that the exon binding sequences (EBS) of group II intron aI5c can accept various substitutes of the authentic intron binding sites (IBS) provided in cis or in trans. The efficiency of cleavages at these cryptic 5' splice sites was enhanced by deletion of the authentic IBS2 element. All cryptic 5' cleavage sites studied here were preceded by an IBS1 like sequence; indicating that the IBS1/EBS1 pairing alone is sufficient for proper 5' splice site selection by the intronic EBS element. The results are discussed in terms of minimal requirements for 5' cleavages and position effects of IBS sites relative to the intron. 相似文献
14.
Extensive interactions of PRP8 protein with the 5'' and 3'' splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. 下载免费PDF全文
Precursor RNAs containing 4-thiouridine at specific sites were used with UV-crosslinking to map the binding sites of the yeast protein splicing factor PRP8. PRP8 protein interacts with a region of at least eight exon nucleotides at the 5' splice site and a minimum of 13 exon nucleotides and part of the polypyrimidine tract in the 3' splice site region. Crosslinking of PRP8 to mutant and duplicated 3' splice sites indicated that the interaction is not sequence specific, nor does it depend on the splice site being functional. Binding of PRP8 to the 5' exon was established before step 1 and to the 3' splice site region after step 1 of splicing. These interactions place PRP8 close to the proposed catalytic core of the spliceosome during both transesterification reactions. To date, this represents the most extensive mapping of the binding site(s) of a splicing factor on the substrate RNA. We propose that the large binding sites of PRP8 stabilize the intrinsically weaker interactions of U5 snRNA with both exons at the splice sites for exon alignment by the U5 snRNP. 相似文献
15.
Small deletions of 6, 7, and 12 nucleotides introduced between the 5' splice site and the internal branch acceptor site of the first intron of the yeast MATa1 gene completely abolish accurate splicing in vitro in these constructs. Splicing only occurs at an alternative 5' splice site which was found in the first exon of the MATa1 gene and which is used both in vivo and in vitro. The splicing defect cannot be cured by expanding the distance from the branch point to the 3' splice site. If the alternative 5' splice site is deleted as well in these constructs, neither spliced products nor spliceosomes are formed. Our findings especially lead to the conclusion that a minimum distance between the 5' splice site and the internal branch acceptor site of the intron is required for the formation of splicing complexes and for accurate splicing. 相似文献
16.
A novel protein factor is required for use of distal alternative 5'' splice sites in vitro. 总被引:12,自引:4,他引:12
Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites. 相似文献
17.
Manash Chatterjee Cathie Martin 《The Plant journal : for cell and molecular biology》1997,11(4):759-771
Tam3 from Antirrhinum majus belongs to the Ac/Ds family of transposable elements. An allele of the DAG locus of Antirrhinum ( dag ::Tam3), which is required for chloroplast development and leaf palisade differentiation, has been generated by Tam3 insertion into the untranslated leader sequence of the gene. This allele gives rise to a cold-sensitive phenotype, where mutant tissue containing wild-type revertant somatic sectors is observed in the leaves of plants grown at 15°C, while leaves of plants grown at 25°C appear near wild-type. The temperature sensitivity of dag ::Tam3 results from expression of the DAG locus responding to the activity of the transposable element, the transposition of which is very sensitive to growing temperature. Genetic suppression of Tam3 transposition, using the STABILISER locus, also results in suppression of the dag mutant phenotype. dag ::Tam3 represents a Tam3-suppressible allele similar to those described for Mu transposons in maize. Suppression of the dag mutant phenotype in response to element inactivation appears to result from use of an alternative promoter at the 3' end of the Tam3 element. The production of suppressible alleles by an Ac-like element is discussed in relation to the mutagenic potential of plant transposons in producing complex genetic diversity. 相似文献
18.
Susanne Kammler Marianne Otte Ilona Hauber Jørgen Kjems Joachim Hauber Heiner Schaal 《Retrovirology》2006,3(1):1-20
Background
Of the diverse subtypes of Human Immunodeficiency Virus Type-1 (HIV-1), subtype-C strains cause a large majority of infections worldwide. The reasons for the global dominance of HIV-1 subtype-C infections are not completely understood. Tat, being critical for viral infectivity and pathogenesis, may differentially modulate pathogenic properties of the viral subtypes. Biochemical studies on Tat are hampered by the limitations of the current purification protocols. Tat purified using standard protocols often is competent for transactivation activity but defective for a variety of other biological functions. Keeping this limitation in view, we developed an efficient protein purification strategy for Tat.Results
Tat proteins obtained using the novel strategy described here were free of contaminants and retained biological functions as evaluated in a range of assays including the induction of cytokines, upregulation of chemokine coreceptor, transactivation of the viral promoter and rescue of a Tat-defective virus. Given the highly unstable nature of Tat, we evaluated the effect of the storage conditions on the biological function of Tat following purification. Tat stored in a lyophilized form retained complete biological activity regardless of the storage temperature. To understand if variations in the primary structure of Tat could influence the secondary structure of the protein and consequently its biological functions, we determined the CD spectra of subtype-C and -B Tat proteins. We demonstrate that subtype-C Tat may have a relatively higher ordered structure and be less flexible than subtype-B Tat. We show that subtype-C Tat as a protein, but not as a DNA expression vector, was consistently inferior to subtype-B Tat in a variety of biological assays. Furthermore, using ELISA, we evaluated the anti-Tat antibody titers in a large number of primary clinical samples (n = 200) collected from all four southern Indian states. Our analysis of the Indian populations demonstrated that Tat is non-immunodominant and that a large variation exists in the antigen-specific antibody titers.Conclusion
Our report not only describes a simple protein purification strategy for Tat but also demonstrates important structural and functional differences between subtype-B and -C Tat proteins. Furthermore, this is the first report of protein purification and characterization of subtype-C Tat. 相似文献19.
Base pairing between the 3'' exon and an internal guide sequence increases 3'' splice site specificity in the Tetrahymena self-splicing rRNA intron. 总被引:8,自引:0,他引:8 下载免费PDF全文
It has been proposed that recognition of the 3' splice site in many group I introns involves base pairing between the start of the 3' exon and a region of the intron known as the internal guide sequence (R. W. Davies, R. B. Waring, J. Ray, T. A. Brown, and C. Scazzocchio, Nature [London] 300:719-724, 1982). We have examined this hypothesis, using the self-splicing rRNA intron from Tetrahymena thermophila. Mutations in the 3' exon that weaken this proposed pairing increased use of a downstream cryptic 3' splice site. Compensatory mutations in the guide sequence that restore this pairing resulted in even stronger selection of the normal 3' splice site. These changes in 3' splice site usage were more pronounced in the background of a mutation (414A) which resulted in an adenine instead of a guanine being the last base of the intron. These results show that the proposed pairing (P10) plays an important role in ensuring that cryptic 3' splice sites are selected against. Surprisingly, the 414A mutation alone did not result in activation of the cryptic 3' splice site. 相似文献
20.